These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32083054)

  • 1. Qualitative Detection Toward Military and Improvised Explosive Vapors by a Facile TiO
    Li Y; Zhou W; Zu B; Dou X
    Front Chem; 2020; 8():29. PubMed ID: 32083054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive, Real-time and Discriminative Detection of Improvised Explosives by Chemiresistive Thin-film Sensory Array of Mn(2+) Tailored Hierarchical ZnS.
    Zhou C; Wu Z; Guo Y; Li Y; Cao H; Zheng X; Dou X
    Sci Rep; 2016 May; 6():25588. PubMed ID: 27161193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fingerprinting of Nitroaromatic Explosives Realized by Aphen-functionalized Titanium Dioxide.
    Xie G; Liu B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-Metal-Doped p-Type ZnO Nanoparticle-Based Sensory Array for Instant Discrimination of Explosive Vapors.
    Qu J; Ge Y; Zu B; Li Y; Dou X
    Small; 2016 Mar; 12(10):1369-77. PubMed ID: 26763156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instant Fingerprint Discrimination for Military Explosive Vapors by Dy
    Hu J; Chen C; Xie X; Zhang L; Song H; Lv Y
    Anal Chem; 2023 Feb; 95(6):3516-3524. PubMed ID: 36730068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives.
    Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots.
    Wu Z; Duan H; Li Z; Guo J; Zhong F; Cao Y; Jia D
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Olfactory System for Trace Identification of Explosive Vapors Realized by Optoelectronic Schottky Sensing.
    Guo L; Yang Z; Dou X
    Adv Mater; 2017 Feb; 29(5):. PubMed ID: 27885730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explosives detection by swabbing for improvised explosive devices.
    Glackin JME; Gillanders RN; Eriksson F; FjÀllgren M; Engblom J; Mohammed S; Samuel IDW; Turnbull GA
    Analyst; 2021 Jan; 145(24):7956-7963. PubMed ID: 33034590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed Vapor Generation Device for delivery of homemade explosives vapor plumes.
    DeGreeff LE; Katilie CJ; Malito M; Giordano B
    Anal Chim Acta; 2018 Dec; 1040():41-48. PubMed ID: 30327112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Response and High Selectivity toward Acetone Vapor Using Hierarchical Structured TiO
    Ge W; Jiao S; Chang Z; He X; Li Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13200-13207. PubMed ID: 32096401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-assisted room-temperature chemiresistive NO
    Xie T; Sullivan N; Steffens K; Wen B; Liu G; Debnath R; Davydov A; Gomez R; Motayed A
    J Alloys Compd; 2015; 653():255-259. PubMed ID: 26681838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explosive odor signature profiling: A review of recent advances in technical analysis and detection.
    Gallegos SF; Aviles-Rosa EO; DeChant MT; Hall NJ; Prada-Tiedemann PA
    Forensic Sci Int; 2023 Jun; 347():111652. PubMed ID: 37019070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor.
    Banerjee S; Mohapatra SK; Misra M; Mishra IB
    Nanotechnology; 2009 Feb; 20(7):075502. PubMed ID: 19417421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward wearable sensors: optical sensor for detection of ammonium nitrate-based explosives, ANFO and ANNM.
    Sheykhi S; Mosca L; Anzenbacher P
    Chem Commun (Camb); 2017 May; 53(37):5196-5199. PubMed ID: 28443900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed fluorescence detection of explosives-like vapors.
    Albert KJ; Walt DR
    Anal Chem; 2000 May; 72(9):1947-55. PubMed ID: 10815950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development in the Detection and Identification of Explosive Residues.
    Beveridge AD
    Forensic Sci Rev; 1992 Jun; 4(1):17-49. PubMed ID: 26267286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-standing, thin-film sensors for the trace detection of explosives.
    Ricci PP; Gregory OJ
    Sci Rep; 2021 Mar; 11(1):6623. PubMed ID: 33758273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Room-Temperature Chemiresistive Properties of Potassium Titanate Whiskers versus Organic Vapors.
    Varezhnikov AS; Fedorov FS; Burmistrov IN; Plugin IA; Sommer M; Lashkov AV; Gorokhovsky AV; Nasibulin AG; Kuznetsov DV; Gorshenkov MV; Sysoev VV
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29257073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.