These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32083054)

  • 21. Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection.
    Wang D; Chen A; Jen AK
    Phys Chem Chem Phys; 2013 Apr; 15(14):5017-21. PubMed ID: 23443512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Study of a QCM Sensor Based on TiO₂ Nanostructures for the Detection of NO₂ and Explosives Vapours in Air.
    Procek M; Stolarczyk A; Pustelny T; Maciak E
    Sensors (Basel); 2015 Apr; 15(4):9563-81. PubMed ID: 25912352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence detection and identification of tagging agents and impurities found in explosives.
    Sheaff CN; Eastwood D; Wai CM; Addleman RS
    Appl Spectrosc; 2008 Jul; 62(7):739-46. PubMed ID: 18935822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Room-Temperature High-Performance H2S Sensor Based on Porous CuO Nanosheets Prepared by Hydrothermal Method.
    Li Z; Wang N; Lin Z; Wang J; Liu W; Sun K; Fu YQ; Wang Z
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20962-8. PubMed ID: 27447694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array.
    Peveler WJ; Roldan A; Hollingsworth N; Porter MJ; Parkin IP
    ACS Nano; 2016 Jan; 10(1):1139-46. PubMed ID: 26579950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor.
    Jo YK; Jeong SY; Moon YK; Jo YM; Yoon JW; Lee JH
    Nat Commun; 2021 Aug; 12(1):4955. PubMed ID: 34400624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cataluminescence-based vapor-sensitive sensor array for discriminating flammable liquid vapors.
    Liu B; Kong H; Luo A
    Talanta; 2014 Apr; 121():43-9. PubMed ID: 24607108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An optoelectronic nose for identification of explosives.
    Askim JR; Li Z; LaGasse MK; Rankin JM; Suslick KS
    Chem Sci; 2016 Jan; 7(1):199-206. PubMed ID: 29861977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection.
    Abuzalat O; Wong D; Park SS; Kim S
    Nanoscale; 2020 Jul; 12(25):13523-13530. PubMed ID: 32555819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct real-time detection of vapors from explosive compounds.
    Ewing RG; Clowers BH; Atkinson DA
    Anal Chem; 2013 Nov; 85(22):10977-83. PubMed ID: 24090362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversible chemiresistive sensing of ultra-low levels of elemental mercury vapor using thermally reduced graphene oxide.
    Salcedo ARM; Sevilla FB
    Mikrochim Acta; 2018 May; 185(6):289. PubMed ID: 29744811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spin Current Sensing for Selective Detection of Explosive Molecules.
    Zhang J; Fahrenthold EP
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4469-4478. PubMed ID: 35014250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct detection of RDX vapor using a conjugated polymer network.
    Gopalakrishnan D; Dichtel WR
    J Am Chem Soc; 2013 Jun; 135(22):8357-62. PubMed ID: 23641956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Halogen Bonding Interactions for Aromatic and Nonaromatic Explosive Detection.
    Jaini AKA; Hughes LB; Kitimet MM; Ulep KJ; Leopold MC; Parish CA
    ACS Sens; 2019 Feb; 4(2):389-397. PubMed ID: 30672707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescent polymer sensor array for detection and discrimination of explosives in water.
    Woodka MD; Schnee VP; Polcha MP
    Anal Chem; 2010 Dec; 82(23):9917-24. PubMed ID: 21069967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field detection capability of immunochemical assays during criminal investigations involving the use of TNT.
    Romolo FS; Ferri E; Mirasoli M; D'Elia M; Ripani L; Peluso G; Risoluti R; Maiolini E; Girotti S
    Forensic Sci Int; 2015 Jan; 246():25-30. PubMed ID: 25460104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trace Detection and Chemical Analysis of Homemade Fuel-Oxidizer Mixture Explosives: Emerging Challenges and Perspectives.
    Forbes TP; Krauss ST; Gillen G
    Trends Analyt Chem; 2020 Oct; 131():. PubMed ID: 34135538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A portable fluorescence detector for fast ultra trace detection of explosive vapors.
    Xin Y; He G; Wang Q; Fang Y
    Rev Sci Instrum; 2011 Oct; 82(10):103102. PubMed ID: 22047275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography.
    Jiang Y; Tang N; Zhou C; Han Z; Qu H; Duan X
    Nanoscale; 2018 Nov; 10(44):20578-20586. PubMed ID: 30226241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.