These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32083069)

  • 1. Progress and Prospects of Bioelectrochemical Systems: Electron Transfer and Its Applications in the Microbial Metabolism.
    Zheng T; Li J; Ji Y; Zhang W; Fang Y; Xin F; Dong W; Wei P; Ma J; Jiang M
    Front Bioeng Biotechnol; 2020; 8():10. PubMed ID: 32083069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemically active biofilms: facts and fiction. A review.
    Babauta J; Renslow R; Lewandowski Z; Beyenal H
    Biofouling; 2012; 28(8):789-812. PubMed ID: 22856464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems.
    Kracke F; Vassilev I; Krömer JO
    Front Microbiol; 2015; 6():575. PubMed ID: 26124754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications.
    Venkata Mohan S; Velvizhi G; Vamshi Krishna K; Lenin Babu M
    Bioresour Technol; 2014 Aug; 165():355-64. PubMed ID: 24791713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Winogradsky Bioelectrochemical System as a Novel Strategy to Enrich Electrochemically Active Microorganisms from Arsenic-Rich Sediments.
    Cantillo-González A; Anguita J; Rojas C; Vargas IT
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry.
    Thapa BS; Kim T; Pandit S; Song YE; Afsharian YP; Rahimnejad M; Kim JR; Oh SE
    Bioresour Technol; 2022 Mar; 347():126579. PubMed ID: 34921921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and application of modified bioelectrochemical system anodes made of carbon nanomaterial for the removal of heavy metals from soil.
    Xiang X; Bai J; Gu W; Peng S; Shih K
    Chemosphere; 2023 Dec; 345():140431. PubMed ID: 37852385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China.
    Xiao Y; Zheng Y; Wu S; Zhang EH; Chen Z; Liang P; Huang X; Yang ZH; Ng IS; Chen BY; Zhao F
    Front Microbiol; 2015; 6():1410. PubMed ID: 26733958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.
    Zhou H; Liu B; Wang Q; Sun J; Xie G; Ren N; Ren ZJ; Xing D
    Biotechnol Biofuels; 2017; 10():238. PubMed ID: 29075322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retracted: The bidirectional extracellular electron transfer process aids iron cycling by
    Yadav S; Sadhotra C; Patil SA
    Appl Environ Microbiol; 2023 Sep; ():e0060923. PubMed ID: 37681980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface].
    Liu X; Zhang J; Zhang B; Yang C; Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):361-377. PubMed ID: 33645140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of advanced anodes in microbial fuel cells for power generation: A review.
    Cai T; Meng L; Chen G; Xi Y; Jiang N; Song J; Zheng S; Liu Y; Zhen G; Huang M
    Chemosphere; 2020 Jun; 248():125985. PubMed ID: 32032871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular electron transfer features of Gram-positive bacteria.
    Pankratova G; Hederstedt L; Gorton L
    Anal Chim Acta; 2019 Oct; 1076():32-47. PubMed ID: 31203962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Industrial bioelectrochemistry for waste valorization: State of the art and challenges.
    Maureira D; Romero O; Illanes A; Wilson L; Ottone C
    Biotechnol Adv; 2023; 64():108123. PubMed ID: 36868391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does bioelectrochemical cell configuration and anode potential affect biofilm response?
    Kumar A; Katuri K; Lens P; Leech D
    Biochem Soc Trans; 2012 Dec; 40(6):1308-14. PubMed ID: 23176473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for modeling electroactive microbial biofilms performing direct electron transfer.
    Korth B; Rosa LF; Harnisch F; Picioreanu C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant enhancement of electron transfer from Shewanella oneidensis using a porous N-doped carbon cloth in a bioelectrochemical system.
    Yuan HR; Deng LF; Qian X; Wang LF; Li DN; Chen Y; Yuan Y
    Sci Total Environ; 2019 May; 665():882-889. PubMed ID: 30790761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroactive microorganisms in bioelectrochemical systems.
    Logan BE; Rossi R; Ragab A; Saikaly PE
    Nat Rev Microbiol; 2019 May; 17(5):307-319. PubMed ID: 30846876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for understanding microbial community structures and functions in microbial fuel cells: a review.
    Zhi W; Ge Z; He Z; Zhang H
    Bioresour Technol; 2014 Nov; 171():461-8. PubMed ID: 25223851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.