BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32083841)

  • 1. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure.
    Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots.
    Sadeghi SM; West RG; Nejat A
    Nanotechnology; 2011 Oct; 22(40):405202. PubMed ID: 21896983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping.
    Wang Y; Jin Y; Zhang T; Huang Z; Yang H; Wang J; Jiang K; Fan S; Li Q
    J Phys Chem Lett; 2019 May; 10(9):2113-2120. PubMed ID: 30990711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.
    Zhao T; Goodwin ED; Guo J; Wang H; Diroll BT; Murray CB; Kagan CR
    ACS Nano; 2016 Oct; 10(10):9267-9273. PubMed ID: 27649044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast emission decay with high emission efficiency of quantum dots in plasmonic-dielectric metasubstrates.
    Wing WJ; Sadeghi SM; Gutha RR
    J Phys Condens Matter; 2017 Jul; 29(29):295301. PubMed ID: 28604367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balancing silicon/aluminum oxide junctions for super-plasmonic emission enhancement of quantum dots via plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Wilt JS; Wu JZ
    Nanoscale; 2018 Mar; 10(10):4825-4832. PubMed ID: 29473074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-DeschĂȘnes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas.
    Giannini V; Vecchi G; Rivas JG
    Phys Rev Lett; 2010 Dec; 105(26):266801. PubMed ID: 21231697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells.
    Tan F; Wang Z; Qu S; Cao D; Liu K; Jiang Q; Yang Y; Pang S; Zhang W; Lei Y; Wang Z
    Nanoscale; 2016 May; 8(19):10198-204. PubMed ID: 27124650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.
    Patty K; Sadeghi SM; Nejat A; Mao CB
    Nanotechnology; 2014 Apr; 25(15):155701. PubMed ID: 24642896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays.
    Yadav RK; Bourgeois MR; Cherqui C; Juarez XG; Wang W; Odom TW; Schatz GC; Basu JK
    ACS Nano; 2020 Jun; 14(6):7347-7357. PubMed ID: 32453547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays.
    Sergeev AA; Pavlov DV; Kuchmizhak AA; Lapine MV; Yiu WK; Dong Y; Ke N; Juodkazis S; Zhao N; Kershaw SV; Rogach AL
    Light Sci Appl; 2020; 9():16. PubMed ID: 32047625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inverted ZnO/P3HT:PbS bulk-heterojunction hybrid solar cell with a CdSe quantum dot interface buffer layer.
    Thomas A; Vinayakan R; Ison VV
    RSC Adv; 2020 Apr; 10(28):16693-16699. PubMed ID: 35498855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots.
    Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H
    ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Sharp C
    Nanotechnology; 2018 Jan; 29(1):015402. PubMed ID: 29130899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescence Properties of CdSe/ZnS Quantum Dot Donor-Acceptor via Plasmon Coupling of Metal Nanostructures and Application on Photovoltaic Devices.
    Nguyen HT; Tran TT; Bhatt V; Kumar M; Yun JH
    J Phys Chem Lett; 2022 May; 13(19):4394-4401. PubMed ID: 35546522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer.
    Higgins LJ; Marocico CA; Karanikolas VD; Bell AP; Gough JJ; Murphy GP; Parbrook PJ; Bradley AL
    Nanoscale; 2016 Oct; 8(42):18170-18179. PubMed ID: 27740658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.