These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 32084219)
41. Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Paré PE; Chappuis JL; Rampersaud R; Agarwala AO; Perra JH; Erkan S; Wu C Spine (Phila Pa 1976); 2011 Aug; 36(18):E1210-4. PubMed ID: 21325986 [TBL] [Abstract][Full Text] [Related]
42. Biomechanical Comparison of Expansive Pedicle Screw and Polymethylmethacrylate-augmented Pedicle Screw in Osteoporotic Synthetic Bone in Primary Implantation: An Experimental Study. Liu D; Shi L; Lei W; Wei MQ; Qu B; Deng SL; Pan XM Clin Spine Surg; 2016 Aug; 29(7):E351-7. PubMed ID: 27137160 [TBL] [Abstract][Full Text] [Related]
43. Enhancing percutaneous pedicle screw fixation with hydroxyapatite granules: A biomechanical study using an osteoporotic bone model. Kanno H; Aizawa T; Hashimoto K; Itoi E PLoS One; 2019; 14(9):e0223106. PubMed ID: 31557234 [TBL] [Abstract][Full Text] [Related]
44. Biomechanical analysis of pedicle screws in osteoporotic bone with bioactive cement augmentation using simulated in vivo multicomponent loading. Choma TJ; Frevert WF; Carson WL; Waters NP; Pfeiffer FM Spine (Phila Pa 1976); 2011 Mar; 36(6):454-62. PubMed ID: 20881517 [TBL] [Abstract][Full Text] [Related]
45. Biomechanical study of expandable pedicle screw fixation in severe osteoporotic bone comparing with conventional and cement-augmented pedicle screws. Chen YL; Chen WC; Chou CW; Chen JW; Chang CM; Lai YS; Cheng CK; Wang ST Med Eng Phys; 2014 Nov; 36(11):1416-20. PubMed ID: 24907127 [TBL] [Abstract][Full Text] [Related]
46. Pullout strength of different pedicle screws after primary and revision insertion: an in vitro study on polyurethane foam. Wu LC; Hsieh YY; Tsuang FY; Kuo YJ; Chen CH; Chiang CJ BMC Musculoskelet Disord; 2023 Nov; 24(1):863. PubMed ID: 37932751 [TBL] [Abstract][Full Text] [Related]
47. Biomechanical evaluation of pedicle screw stability after 360-degree turnback from full insertion: effects of screw shape, pilot hole profile and bone density. Li YD; Hsieh MK; Chen WP; Lee DM; Tsai TT; Lai PL; Tai CL Front Bioeng Biotechnol; 2023; 11():1151627. PubMed ID: 37214307 [TBL] [Abstract][Full Text] [Related]
48. Minimizing Pedicle Screw Pullout Risks: A Detailed Biomechanical Analysis of Screw Design and Placement. Bianco RJ; Arnoux PJ; Wagnac E; Mac-Thiong JM; Aubin CÉ Clin Spine Surg; 2017 Apr; 30(3):E226-E232. PubMed ID: 28323704 [TBL] [Abstract][Full Text] [Related]
49. A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws. Vishnubhotla S; McGarry WB; Mahar AT; Gelb DE Spine J; 2011 Aug; 11(8):777-81. PubMed ID: 21802996 [TBL] [Abstract][Full Text] [Related]
50. Krag versus Caudad trajectory technique for pedicle screw insertion in osteoporotic vertebrae: biomechanical comparison and analysis. Yuan Q; Han X; Han X; He D; Liu B; Tian W Spine (Phila Pa 1976); 2014 Dec; 39(26 Spec No.):B27-35. PubMed ID: 25504099 [TBL] [Abstract][Full Text] [Related]
51. Investigation of pullout strength in different designs of pedicle screws for osteoporotic bone quality using finite element analysis. Yang SC; Liu PH; Tu YK Acta Bioeng Biomech; 2019; 21(3):57-66. PubMed ID: 31798015 [TBL] [Abstract][Full Text] [Related]
52. The quantity of bone cement influences the anchorage of augmented pedicle screws in the osteoporotic spine: A biomechanical human cadaveric study. Pishnamaz M; Lange H; Herren C; Na HS; Lichte P; Hildebrand F; Pape HC; Kobbe P Clin Biomech (Bristol); 2018 Feb; 52():14-19. PubMed ID: 29309925 [TBL] [Abstract][Full Text] [Related]
53. Biomechanical comparative study of midline cortical vs. traditional pedicle screw trajectory in osteoporotic bone. Schleifenbaum S; Vogl AC; Heilmann R; von der Hoeh NH; Heyde CE; Jarvers JS BMC Musculoskelet Disord; 2023 May; 24(1):395. PubMed ID: 37198565 [TBL] [Abstract][Full Text] [Related]
54. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses. Chao CK; Hsu CC; Wang JL; Lin J J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719 [TBL] [Abstract][Full Text] [Related]
55. Impaction grafting of lumbar pedicle defects: a biomechanical study of a novel technique for pedicle screw revision. Shen FH; Hayward GM; Harris JA; Gonzalez J; Thai E; Raso J; Van Horn MR; Bucklen BS J Neurosurg Spine; 2023 Mar; 38(3):313-318. PubMed ID: 36683188 [TBL] [Abstract][Full Text] [Related]
56. Pullout characteristics of percutaneous pedicle screws with different cement augmentation methods in elderly spines: An in vitro biomechanical study. Charles YP; Pelletier H; Hydier P; Schuller S; Garnon J; Sauleau EA; Steib JP; Clavert P Orthop Traumatol Surg Res; 2015 May; 101(3):369-74. PubMed ID: 25755067 [TBL] [Abstract][Full Text] [Related]
57. Effect of surgical factors on the augmentation of cement-injectable cannulated pedicle screw fixation by a novel calcium phosphate-based nanocomposite. Sun H; Liu C; Chen S; Bai Y; Yang H; Li C; Yang L Front Med; 2019 Oct; 13(5):590-601. PubMed ID: 31555965 [TBL] [Abstract][Full Text] [Related]
58. Factors affecting the pullout strength of cancellous bone screws. Chapman JR; Harrington RM; Lee KM; Anderson PA; Tencer AF; Kowalski D J Biomech Eng; 1996 Aug; 118(3):391-8. PubMed ID: 8872262 [TBL] [Abstract][Full Text] [Related]