BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 32084268)

  • 1. Activating Transcription Factor 3 (ATF3) Protects Retinal Ganglion Cells and Promotes Functional Preservation After Optic Nerve Crush.
    Kole C; Brommer B; Nakaya N; Sengupta M; Bonet-Ponce L; Zhao T; Wang C; Li W; He Z; Tomarev S
    Invest Ophthalmol Vis Sci; 2020 Feb; 61(2):31. PubMed ID: 32084268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interleukin-4 protects retinal ganglion cells and promotes axon regeneration.
    Zuo Z; Fan B; Zhang Z; Liang Y; Chi J; Li G
    Cell Commun Signal; 2024 Apr; 22(1):236. PubMed ID: 38650003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of PTEN/SOCS3 deletion on amelioration of dendritic shrinkage of retinal ganglion cells after optic nerve injury.
    Mak HK; Ng SH; Ren T; Ye C; Leung CK
    Exp Eye Res; 2020 Mar; 192():107938. PubMed ID: 31972211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells.
    Fernandes KA; Harder JM; Kim J; Libby RT
    Exp Eye Res; 2013 Jul; 112():106-17. PubMed ID: 23648575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse.
    Patel AK; Park KK; Hackam AS
    Neuroscience; 2017 Feb; 343():372-383. PubMed ID: 28011153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viral delivery of multiple miRNAs promotes retinal ganglion cell survival and functional preservation after optic nerve crush injury.
    Mead B; Cullather E; Nakaya N; Niu Y; Kole C; Ahmed Z; Tomarev S
    Exp Eye Res; 2020 Aug; 197():108071. PubMed ID: 32574667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprotective effects of inhibitors of Acid-Sensing ion channels (ASICs) in optic nerve crush model in rodents.
    Stankowska DL; Mueller BH; Oku H; Ikeda T; Dibas A
    Curr Eye Res; 2018 Jan; 43(1):84-95. PubMed ID: 29111855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Celastrol supports survival of retinal ganglion cells injured by optic nerve crush.
    Kyung H; Kwong JM; Bekerman V; Gu L; Yadegari D; Caprioli J; Piri N
    Brain Res; 2015 Jun; 1609():21-30. PubMed ID: 25813825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of Brain-Derived Neurotrophic Factor Protects Large Retinal Ganglion Cells After Optic Nerve Crush in Mice.
    Feng L; Puyang Z; Chen H; Liang P; Troy JB; Liu X
    eNeuro; 2017; 4(1):. PubMed ID: 28101532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of alpha lipoic acid on retinal ganglion cell survival in an optic nerve crush model.
    Liu R; Wang Y; Pu M; Gao J
    Mol Vis; 2016; 22():1122-1136. PubMed ID: 27703307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma.
    Joly S; Pernet V
    J Neurochem; 2016 Aug; 138(4):571-86. PubMed ID: 27309795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice.
    Yungher BJ; Ribeiro M; Park KK
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1743-1750. PubMed ID: 28324115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Park7 protects retinal ganglion cells and promotes functional preservation after optic nerve crush via regulation of the Nrf2 signaling pathway.
    Ouyang L; He T; Xing Y
    Graefes Arch Clin Exp Ophthalmol; 2023 Dec; 261(12):3489-3502. PubMed ID: 37199801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of galectin-3 promotes neuroprotection in retinal ganglion cells after optic nerve injury.
    Abreu CA; De Lima SV; Mendonça HR; Goulart CO; Martinez AM
    Histol Histopathol; 2017 Mar; 32(3):253-262. PubMed ID: 27255346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of Axonal Degeneration by Calcium Channel Inhibitors Improves Retinal Ganglion Cell Survival and Regeneration After Optic Nerve Crush.
    Ribas VT; Koch JC; Michel U; Bähr M; Lingor P
    Mol Neurobiol; 2017 Jan; 54(1):72-86. PubMed ID: 26732591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carnosine decreases retinal ganglion cell death in a mouse model of optic nerve crushing.
    Kim HG; Heo H; Sung MS; Park SW
    Neurosci Lett; 2019 Oct; 711():134431. PubMed ID: 31415801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intravitreal delivery of human NgR-Fc decoy protein regenerates axons after optic nerve crush and protects ganglion cells in glaucoma models.
    Wang X; Lin J; Arzeno A; Choi JY; Boccio J; Frieden E; Bhargava A; Maynard G; Tsai JC; Strittmatter SM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(2):1357-66. PubMed ID: 25655801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmed cell death-1 is expressed in large retinal ganglion cells and is upregulated after optic nerve crush.
    Wang W; Chan A; Qin Y; Kwong JMK; Caprioli J; Levinson R; Chen L; Gordon LK
    Exp Eye Res; 2015 Nov; 140():1-9. PubMed ID: 26277582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush.
    Sharma TP; Liu Y; Wordinger RJ; Pang IH; Clark AF
    Cell Death Dis; 2015 Feb; 6(2):e1661. PubMed ID: 25719245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage.
    Donahue RJ; Maes ME; Grosser JA; Nickells RW
    Mol Neurobiol; 2020 Feb; 57(2):1070-1084. PubMed ID: 31673950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.