These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
678 related articles for article (PubMed ID: 32084340)
1. A Deep Learning Approach to Antibiotic Discovery. Stokes JM; Yang K; Swanson K; Jin W; Cubillos-Ruiz A; Donghia NM; MacNair CR; French S; Carfrae LA; Bloom-Ackermann Z; Tran VM; Chiappino-Pepe A; Badran AH; Andrews IW; Chory EJ; Church GM; Brown ED; Jaakkola TS; Barzilay R; Collins JJ Cell; 2020 Feb; 180(4):688-702.e13. PubMed ID: 32084340 [TBL] [Abstract][Full Text] [Related]
2. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Liu G; Catacutan DB; Rathod K; Swanson K; Jin W; Mohammed JC; Chiappino-Pepe A; Syed SA; Fragis M; Rachwalski K; Magolan J; Surette MG; Coombes BK; Jaakkola T; Barzilay R; Collins JJ; Stokes JM Nat Chem Biol; 2023 Nov; 19(11):1342-1350. PubMed ID: 37231267 [TBL] [Abstract][Full Text] [Related]
3. On the ability of machine learning methods to discover novel scaffolds. Jagdev R; Madsen TB; Finn PW J Mol Model; 2022 Dec; 29(1):22. PubMed ID: 36574054 [TBL] [Abstract][Full Text] [Related]
4. A brief guide to machine learning for antibiotic discovery. Liu G; Stokes JM Curr Opin Microbiol; 2022 Oct; 69():102190. PubMed ID: 35963098 [TBL] [Abstract][Full Text] [Related]
5. A high-throughput small-molecule screen to identify a novel chemical inhibitor of Clostridium difficile. Katzianer DS; Yano T; Rubin H; Zhu J Int J Antimicrob Agents; 2014 Jul; 44(1):69-73. PubMed ID: 24837414 [TBL] [Abstract][Full Text] [Related]
6. Defining new chemical space for drug penetration into Gram-negative bacteria. Zhao S; Adamiak JW; Bonifay V; Mehla J; Zgurskaya HI; Tan DS Nat Chem Biol; 2020 Dec; 16(12):1293-1302. PubMed ID: 33199906 [TBL] [Abstract][Full Text] [Related]
7. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Machutta CA; Kollmann CS; Lind KE; Bai X; Chan PF; Huang J; Ballell L; Belyanskaya S; Besra GS; Barros-Aguirre D; Bates RH; Centrella PA; Chang SS; Chai J; Choudhry AE; Coffin A; Davie CP; Deng H; Deng J; Ding Y; Dodson JW; Fosbenner DT; Gao EN; Graham TL; Graybill TL; Ingraham K; Johnson WP; King BW; Kwiatkowski CR; Lelièvre J; Li Y; Liu X; Lu Q; Lehr R; Mendoza-Losana A; Martin J; McCloskey L; McCormick P; O'Keefe HP; O'Keeffe T; Pao C; Phelps CB; Qi H; Rafferty K; Scavello GS; Steiginga MS; Sundersingh FS; Sweitzer SM; Szewczuk LM; Taylor A; Toh MF; Wang J; Wang M; Wilkins DJ; Xia B; Yao G; Zhang J; Zhou J; Donahue CP; Messer JA; Holmes D; Arico-Muendel CC; Pope AJ; Gross JW; Evindar G Nat Commun; 2017 Jul; 8():16081. PubMed ID: 28714473 [TBL] [Abstract][Full Text] [Related]
8. Siderophore Conjugates of Daptomycin are Potent Inhibitors of Carbapenem Resistant Strains of Acinetobacter baumannii. Ghosh M; Lin YM; Miller PA; Möllmann U; Boggess WC; Miller MJ ACS Infect Dis; 2018 Oct; 4(10):1529-1535. PubMed ID: 30043609 [TBL] [Abstract][Full Text] [Related]
9. A machine learning model trained on a high-throughput antibacterial screen increases the hit rate of drug discovery. Rahman ASMZ; Liu C; Sturm H; Hogan AM; Davis R; Hu P; Cardona ST PLoS Comput Biol; 2022 Oct; 18(10):e1010613. PubMed ID: 36228001 [TBL] [Abstract][Full Text] [Related]
10. Repurposing FDA-approved drugs to combat drug-resistant Acinetobacter baumannii. Chopra S; Torres-Ortiz M; Hokama L; Madrid P; Tanga M; Mortelmans K; Kodukula K; Galande AK J Antimicrob Chemother; 2010 Dec; 65(12):2598-601. PubMed ID: 20861141 [TBL] [Abstract][Full Text] [Related]
11. Antibacterial activity of exogenous glutathione and its synergism on antibiotics sensitize carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. Alharbe R; Almansour A; Kwon DH Int J Med Microbiol; 2017 Oct; 307(7):409-414. PubMed ID: 28781060 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. Lee S; Razqan GS; Kwon DH Phytomedicine; 2017 Jan; 24():49-55. PubMed ID: 28160861 [TBL] [Abstract][Full Text] [Related]
13. Small Molecule Potentiation of Gram-Positive Selective Antibiotics against Martin SE; Melander RJ; Brackett CM; Scott AJ; Chandler CE; Nguyen CM; Minrovic BM; Harrill SE; Ernst RK; Manoil C; Melander C ACS Infect Dis; 2019 Jul; 5(7):1223-1230. PubMed ID: 31002491 [TBL] [Abstract][Full Text] [Related]
14. In silico and in vitro studies of a number PILs as new antibacterials against MDR clinical isolate Acinetobacter baumannii. Trush MM; Kovalishyn V; Hodyna D; Golovchenko OV; Chumachenko S; Tetko IV; Brovarets VS; Metelytsia L Chem Biol Drug Des; 2020 Jun; 95(6):624-630. PubMed ID: 32168424 [TBL] [Abstract][Full Text] [Related]
18. Identification and bioevaluation of SRI-12742 as an antimicrobial agent against multidrug-resistant Acinetobacter baumannii. Shukla M; Soni I; Matsuyama K; Tran T; Tanga M; Gong L; Chopra S Int J Antimicrob Agents; 2018 Jul; 52(1):22-27. PubMed ID: 29501820 [TBL] [Abstract][Full Text] [Related]
19. Combinatorial Libraries As a Tool for the Discovery of Novel, Broad-Spectrum Antibacterial Agents Targeting the ESKAPE Pathogens. Fleeman R; LaVoi TM; Santos RG; Morales A; Nefzi A; Welmaker GS; Medina-Franco JL; Giulianotti MA; Houghten RA; Shaw LN J Med Chem; 2015 Apr; 58(8):3340-55. PubMed ID: 25780985 [TBL] [Abstract][Full Text] [Related]
20. In vivo antibacterial activity of Zataria multiflora Boiss extract and its components, carvacrol, and thymol, against colistin-resistant Acinetobacter baumannii in a pneumonic BALB/c mouse model. Hassannejad N; Bahador A; Rudbari NH; Modarressi MH; Parivar K J Cell Biochem; 2019 Nov; 120(11):18640-18649. PubMed ID: 31338900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]