BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 32084388)

  • 1. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank.
    Geurts MH; de Poel E; Amatngalim GD; Oka R; Meijers FM; Kruisselbrink E; van Mourik P; Berkers G; de Winter-de Groot KM; Michel S; Muilwijk D; Aalbers BL; Mullenders J; Boj SF; Suen SWF; Brunsveld JE; Janssens HM; Mall MA; Graeber SY; van Boxtel R; van der Ent CK; Beekman JM; Clevers H
    Cell Stem Cell; 2020 Apr; 26(4):503-510.e7. PubMed ID: 32084388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor.
    Amistadi S; Maule G; Ciciani M; Ensinck MM; De Keersmaecker L; Ramalho AS; Guidone D; Buccirossi M; Galietta LJV; Carlon MS; Cereseto A
    Mol Ther; 2023 Jun; 31(6):1647-1660. PubMed ID: 36895161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation.
    Santos L; Mention K; Cavusoglu-Doran K; Sanz DJ; Bacalhau M; Lopes-Pacheco M; Harrison PT; Farinha CM
    J Cyst Fibros; 2022 Jan; 21(1):181-187. PubMed ID: 34103250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster.
    Ni XY; Zhou ZD; Huang J; Qiao X
    Arch Insect Biochem Physiol; 2020 May; 104(1):e21662. PubMed ID: 32027059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity.
    Wang P; Xu L; Gao Y; Han R
    Mol Ther; 2020 Jul; 28(7):1696-1705. PubMed ID: 32353322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9.
    Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S
    FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.
    Schwank G; Koo BK; Sasselli V; Dekkers JF; Heo I; Demircan T; Sasaki N; Boymans S; Cuppen E; van der Ent CK; Nieuwenhuis EE; Beekman JM; Clevers H
    Cell Stem Cell; 2013 Dec; 13(6):653-8. PubMed ID: 24315439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous Expression and Purification of a CRISPR-Cas9-Based Adenine Base Editor.
    Lee SN; Jang HS; Woo JS
    Methods Mol Biol; 2023; 2606():123-133. PubMed ID: 36592312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.
    Kim HK; Lee S; Kim Y; Park J; Min S; Choi JW; Huang TP; Yoon S; Liu DR; Kim HH
    Nat Biomed Eng; 2020 Jan; 4(1):111-124. PubMed ID: 31937939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide target specificity of CRISPR RNA-guided adenine base editors.
    Kim D; Kim DE; Lee G; Cho SI; Kim JS
    Nat Biotechnol; 2019 Apr; 37(4):430-435. PubMed ID: 30833658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered prime editors with PAM flexibility.
    Kweon J; Yoon JK; Jang AH; Shin HR; See JE; Jang G; Kim JI; Kim Y
    Mol Ther; 2021 Jun; 29(6):2001-2007. PubMed ID: 33636398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells.
    Zhu XX; Pan JS; Lin T; Yang YC; Huang QY; Yang SP; Qu ZX; Lin ZS; Wen JC; Yan AF; Feng J; Liu L; Zhang XL; Lu JH; Tang DS
    Biotechnol Lett; 2022 Jan; 44(1):59-76. PubMed ID: 34997407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structure-based optimization and design of CRISPR protein xCas9].
    Xue D; Zhu H; Du W; Tang H; Huang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1385-1395. PubMed ID: 33973451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Pass: Gene Rescue of Nonsense Mutations Using Adenine Base Editors.
    Lee C; Hyun Jo D; Hwang GH; Yu J; Kim JH; Park SE; Kim JS; Kim JH; Bae S
    Mol Ther; 2019 Aug; 27(8):1364-1371. PubMed ID: 31164261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.