BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32085387)

  • 1. Quantum Dots and Applications.
    Han CY; Kim HS; Yang H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32085387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures.
    Bai X; Purcell-Milton F; Gun'ko YK
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30634642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating the Optoelectronic Properties of Quasi-type II CuInS
    Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications.
    Zhao H; Liu J; Vidal F; Vomiero A; Rosei F
    Nanoscale; 2018 Sep; 10(36):17189-17197. PubMed ID: 30191225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications.
    Zaiats G; Yanover D; Vaxenburg R; Tilchin J; Sashchiuk A; Lifshitz E
    Materials (Basel); 2014 Oct; 7(11):7243-7275. PubMed ID: 28788244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of light-emitting-diode based on quantum dots.
    Kim S; Im SH; Kim SW
    Nanoscale; 2013 Jun; 5(12):5205-14. PubMed ID: 23695105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.
    Liu X; Zhao S; Gu W; Zhang Y; Qiao X; Ni Z; Pi X; Yang D
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5959-5966. PubMed ID: 29345903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Core-Shell Quantum Dots-3D WS
    Tang SY; Yang CC; Su TY; Yang TY; Wu SC; Hsu YC; Chen YZ; Lin TN; Shen JL; Lin HN; Chiu PW; Kuo HC; Chueh YL
    ACS Nano; 2020 Oct; 14(10):12668-12678. PubMed ID: 32813498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, optoelectronic properties and applications of halide perovskites.
    Chouhan L; Ghimire S; Subrahmanyam C; Miyasaka T; Biju V
    Chem Soc Rev; 2020 May; 49(10):2869-2885. PubMed ID: 32337524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators.
    Zhu M; Li Y; Tian S; Xie Y; Zhao X; Gong X
    J Colloid Interface Sci; 2019 Jan; 534():509-517. PubMed ID: 30253352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics.
    Sanchez RS; de la Fuente MS; Suarez I; Muñoz-Matutano G; Martinez-Pastor JP; Mora-Sero I
    Sci Adv; 2016 Jan; 2(1):e1501104. PubMed ID: 26844299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid light-emitting diodes from anthracene-contained polymer and CdSe/ZnS core/shell quantum dots.
    Tu ML; Su YK; Chen RT
    Nanoscale Res Lett; 2014; 9(1):611. PubMed ID: 25419194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Characteristics of ZnS Passivated CdSe/CdS Quantum Dots for High Photostability and Lasing.
    Wang X; Yu J; Chen R
    Sci Rep; 2018 Nov; 8(1):17323. PubMed ID: 30470827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering silicon-carbide quantum dots for third generation photovoltaic cells.
    Ouarrad H; Ramadan FZ; Drissi LB
    Opt Express; 2020 Nov; 28(24):36656-36667. PubMed ID: 33379755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dots derived from two-dimensional transition metal dichalcogenides: synthesis, optical properties and optoelectronic applications.
    Chiu CH; Chen YT; Shen JL
    Nanotechnology; 2023 Sep; 34(48):. PubMed ID: 37607498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes.
    Jang EP; Yang H
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6011-5. PubMed ID: 24205590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness.
    Zhang H; Ma X; Lin Q; Zeng Z; Wang H; Li LS; Shen H; Jia Y; Du Z
    J Phys Chem Lett; 2020 Feb; 11(3):960-967. PubMed ID: 31957438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TCNQ Interlayers for Colloidal Quantum Dot Light-Emitting Diodes.
    Koh WK; Shin T; Jung C; Cho DK
    Chemphyschem; 2016 Apr; 17(8):1095-7. PubMed ID: 26853901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.