These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32085404)
1. Co-Suppression of Ali MS; Baek KH Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32085404 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of high contents of free amino acids in the leaves of Nicotiana benthamiana by the co-suppression of NbClpC1 and NbClpC2 genes. Ali MS; Kim KW; Dhakal R; Choi D; Baek KH Plant Cell Rep; 2015 Mar; 34(3):355-65. PubMed ID: 25433858 [TBL] [Abstract][Full Text] [Related]
3. Co-suppression of NbClpC1 and NbClpC2 alters plant morphology with changed hormone levels in Nicotiana benthamiana. Ali MS; Baek KH Plant Cell Rep; 2019 Oct; 38(10):1317-1328. PubMed ID: 31385037 [TBL] [Abstract][Full Text] [Related]
4. In Vivo Trapping of Proteins Interacting with the Chloroplast CLPC1 Chaperone: Potential Substrates and Adaptors. Montandon C; Friso G; Liao JR; Choi J; van Wijk KJ J Proteome Res; 2019 Jun; 18(6):2585-2600. PubMed ID: 31070379 [TBL] [Abstract][Full Text] [Related]
5. ClpC2 protects mycobacteria against a natural antibiotic targeting ClpC1-dependent protein degradation. Taylor G; Cui H; Leodolter J; Giese C; Weber-Ban E Commun Biol; 2023 Mar; 6(1):301. PubMed ID: 36944713 [TBL] [Abstract][Full Text] [Related]
6. Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Park S; Rodermel SR Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12765-70. PubMed ID: 15304652 [TBL] [Abstract][Full Text] [Related]
7. Clp-targeting BacPROTACs impair mycobacterial proteostasis and survival. Hoi DM; Junker S; Junk L; Schwechel K; Fischel K; Podlesainski D; Hawkins PME; van Geelen L; Kaschani F; Leodolter J; Morreale FE; Kleine S; Guha S; Rumpel K; Schmiedel VM; Weinstabl H; Meinhart A; Payne RJ; Kaiser M; Hartl M; Boehmelt G; Kazmaier U; Kalscheuer R; Clausen T Cell; 2023 May; 186(10):2176-2192.e22. PubMed ID: 37137307 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. Zheng B; Halperin T; Hruskova-Heidingsfeldova O; Adam Z; Clarke AK Physiol Plant; 2002 Jan; 114(1):92-101. PubMed ID: 11982939 [TBL] [Abstract][Full Text] [Related]
9. Clp Protease and OR Directly Control the Proteostasis of Phytoene Synthase, the Crucial Enzyme for Carotenoid Biosynthesis in Arabidopsis. Welsch R; Zhou X; Yuan H; Álvarez D; Sun T; Schlossarek D; Yang Y; Shen G; Zhang H; Rodriguez-Concepcion M; Thannhauser TW; Li L Mol Plant; 2018 Jan; 11(1):149-162. PubMed ID: 29155321 [TBL] [Abstract][Full Text] [Related]
10. Developmental- and Tissue-Specific Expression of NbCMT3-2 Encoding a Chromomethylase in Nicotiana benthamiana. Lin YT; Wei HM; Lu HY; Lee YI; Fu SF Plant Cell Physiol; 2015 Jun; 56(6):1124-43. PubMed ID: 25745030 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Sjögren LL; MacDonald TM; Sutinen S; Clarke AK Plant Physiol; 2004 Dec; 136(4):4114-26. PubMed ID: 15563614 [TBL] [Abstract][Full Text] [Related]
12. The chloroplast protease system degrades stromal DUF760-1 and DUF760-2 domain-containing proteins at different rates. Yuan B; van Wijk KJ Plant Physiol; 2024 Nov; 196(3):1788-1801. PubMed ID: 39155062 [TBL] [Abstract][Full Text] [Related]
13. The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts. Zhang S; Zhang H; Xia Y; Xiong L BMC Plant Biol; 2018 Sep; 18(1):192. PubMed ID: 30208840 [TBL] [Abstract][Full Text] [Related]
14. Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis. Stanne TM; Sjögren LL; Koussevitzky S; Clarke AK Biochem J; 2009 Jan; 417(1):257-68. PubMed ID: 18754756 [TBL] [Abstract][Full Text] [Related]
15. Virus-induced multiple gene silencing to study redundant metabolic pathways in plants: silencing the starch degradation pathway in Nicotiana benthamiana. George GM; Bauer R; Blennow A; Kossmann J; Lloyd JR Biotechnol J; 2012 Jul; 7(7):884-90. PubMed ID: 22345045 [TBL] [Abstract][Full Text] [Related]
16. Control of plastidial metabolism by the Clp protease complex. Rodriguez-Concepcion M; D'Andrea L; Pulido P J Exp Bot; 2019 Apr; 70(7):2049-2058. PubMed ID: 30576524 [TBL] [Abstract][Full Text] [Related]
17. Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Rudella A; Friso G; Alonso JM; Ecker JR; van Wijk KJ Plant Cell; 2006 Jul; 18(7):1704-21. PubMed ID: 16766689 [TBL] [Abstract][Full Text] [Related]
18. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. Moreno JC; Tiller N; Diez M; Karcher D; Tillich M; Schöttler MA; Bock R J Exp Bot; 2017 Apr; 68(9):2199-2218. PubMed ID: 28369470 [TBL] [Abstract][Full Text] [Related]
19. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Hirayama A; Kami K; Sugimoto M; Sugawara M; Toki N; Onozuka H; Kinoshita T; Saito N; Ochiai A; Tomita M; Esumi H; Soga T Cancer Res; 2009 Jun; 69(11):4918-25. PubMed ID: 19458066 [TBL] [Abstract][Full Text] [Related]
20. Metabolic Profiling with Gas Chromatography-Mass Spectrometry and Capillary Electrophoresis-Mass Spectrometry Reveals the Carbon-Nitrogen Status of Tobacco Leaves Across Different Planting Areas. Zhao J; Zhao Y; Hu C; Zhao C; Zhang J; Li L; Zeng J; Peng X; Lu X; Xu G J Proteome Res; 2016 Feb; 15(2):468-76. PubMed ID: 26784525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]