These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 32085505)
1. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer. Xie H; Li G; Zhao X; Li F Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505 [TBL] [Abstract][Full Text] [Related]
2. Research on Joint-Angle Prediction Based on Artificial Neural Network for Above-Knee Amputees. Yang J; Li G; Zhao X; Xie H Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770512 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Lee T; Kim I; Lee SH Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587 [TBL] [Abstract][Full Text] [Related]
4. Recurrent Neural Network Enabled Continuous Motion Estimation of Lower Limb Joints From Incomplete sEMG Signals. Wang G; Jin L; Zhang J; Duan X; Yi J; Zhang M; Sun Z IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3577-3589. PubMed ID: 39269795 [TBL] [Abstract][Full Text] [Related]
5. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach. Song Q; Ma X; Liu Y Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381 [TBL] [Abstract][Full Text] [Related]
6. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton. Guo Z; Wang C; Song C PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239 [TBL] [Abstract][Full Text] [Related]
7. Continuous motion estimation of lower limbs based on deep belief networks and random forest. Wang F; Lu J; Fan Z; Ren C; Geng X Rev Sci Instrum; 2022 Apr; 93(4):044106. PubMed ID: 35489877 [TBL] [Abstract][Full Text] [Related]
9. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure. Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811 [TBL] [Abstract][Full Text] [Related]
10. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model. Ding Q; Han J; Zhao X IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324 [TBL] [Abstract][Full Text] [Related]
11. A Transformer-Based Neural Network for Gait Prediction in Lower Limb Exoskeleton Robots Using Plantar Force. Ren J; Wang A; Li H; Yue X; Meng L Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514841 [TBL] [Abstract][Full Text] [Related]
12. Development of an individualized stable and force-reducing lower-limb exoskeleton. Huang GS; Yen MH; Chang CC; Lai CL; Chen CC Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39212326 [TBL] [Abstract][Full Text] [Related]
13. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals. Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Joint Angles Based on Human Lower Limb Surface Electromyography. Zhao H; Qiu Z; Peng D; Wang F; Wang Z; Qiu S; Shi X; Chu Q Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420573 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints. Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915 [TBL] [Abstract][Full Text] [Related]
16. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
17. A Low-Cost End-to-End sEMG-Based Gait Sub-Phase Recognition System. Luo R; Sun S; Zhang X; Tang Z; Wang W IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):267-276. PubMed ID: 31675333 [TBL] [Abstract][Full Text] [Related]
18. Design and analysis of a lower limb assistive exoskeleton robot. Li X; Wang KY; Yang ZY Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039 [TBL] [Abstract][Full Text] [Related]
19. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
20. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters. Raj R; Sivanandan KS J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]