BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 32085582)

  • 1. The Histone Code of Senescence.
    Paluvai H; Di Giorgio E; Brancolini C
    Cells; 2020 Feb; 9(2):. PubMed ID: 32085582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone Variant H2A.J Marks Persistent DNA Damage and Triggers the Secretory Phenotype in Radiation-Induced Senescence.
    Isermann A; Mann C; Rübe CE
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33266246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic Regulation of Cellular Senescence.
    Crouch J; Shvedova M; Thanapaul RJRS; Botchkarev V; Roh D
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.
    Malaquin N; Martinez A; Rodier F
    Exp Gerontol; 2016 Sep; 82():39-49. PubMed ID: 27235851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A.
    Leon KE; Buj R; Lesko E; Dahl ES; Chen CW; Tangudu NK; Imamura-Kawasawa Y; Kossenkov AV; Hobbs RP; Aird KM
    J Cell Biol; 2021 Aug; 220(8):. PubMed ID: 34037658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration in the chromatin landscape during the DNA damage response: Continuous rotation of the gear driving cellular senescence and aging.
    Qian J; Zhou X; Tanaka K; Takahashi A
    DNA Repair (Amst); 2023 Nov; 131():103572. PubMed ID: 37742405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging.
    Hekmatimoghaddam S; Dehghani Firoozabadi A; Zare-Khormizi MR; Pourrajab F
    Ageing Res Rev; 2017 Nov; 40():120-141. PubMed ID: 28993289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging.
    Lyu G; Guan Y; Zhang C; Zong L; Sun L; Huang X; Huang L; Zhang L; Tian XL; Zhou Z; Tao W
    Nat Commun; 2018 Jul; 9(1):2560. PubMed ID: 29967491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HDAC4 degradation during senescence unleashes an epigenetic program driven by AP-1/p300 at selected enhancers and super-enhancers.
    Di Giorgio E; Paluvai H; Dalla E; Ranzino L; Renzini A; Moresi V; Minisini M; Picco R; Brancolini C
    Genome Biol; 2021 May; 22(1):129. PubMed ID: 33966634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD.
    Yao H; Rahman I
    Am J Physiol Lung Cell Mol Physiol; 2012 Oct; 303(7):L557-66. PubMed ID: 22842217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hallmarks of Cellular Senescence.
    Hernandez-Segura A; Nehme J; Demaria M
    Trends Cell Biol; 2018 Jun; 28(6):436-453. PubMed ID: 29477613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4.
    Kang C; Xu Q; Martin TD; Li MZ; Demaria M; Aron L; Lu T; Yankner BA; Campisi J; Elledge SJ
    Science; 2015 Sep; 349(6255):aaa5612. PubMed ID: 26404840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans.
    Carroll JE; Cole SW; Seeman TE; Breen EC; Witarama T; Arevalo JMG; Ma J; Irwin MR
    Brain Behav Immun; 2016 Jan; 51():223-229. PubMed ID: 26336034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Techniques to Induce and Quantify Cellular Senescence.
    Noren Hooten N; Evans MK
    J Vis Exp; 2017 May; (123):. PubMed ID: 28518126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MLL1 is essential for the senescence-associated secretory phenotype.
    Capell BC; Drake AM; Zhu J; Shah PP; Dou Z; Dorsey J; Simola DF; Donahue G; Sammons M; Rai TS; Natale C; Ridky TW; Adams PD; Berger SL
    Genes Dev; 2016 Feb; 30(3):321-36. PubMed ID: 26833731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging.
    Adams PD
    Gene; 2007 Aug; 397(1-2):84-93. PubMed ID: 17544228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells.
    Corpet A; Stucki M
    Chromosoma; 2014 Oct; 123(5):423-36. PubMed ID: 24861957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli.
    Maciel-Barón LA; Morales-Rosales SL; Aquino-Cruz AA; Triana-Martínez F; Galván-Arzate S; Luna-López A; González-Puertos VY; López-Díazguerrero NE; Torres C; Königsberg M
    Age (Dordr); 2016 Feb; 38(1):26. PubMed ID: 26867806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone Modifications in Aging: The Underlying Mechanisms and Implications.
    Wang Y; Yuan Q; Xie L
    Curr Stem Cell Res Ther; 2018; 13(2):125-135. PubMed ID: 28820059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ageing epigenome: damaged beyond repair?
    Sinclair DA; Oberdoerffer P
    Ageing Res Rev; 2009 Jul; 8(3):189-98. PubMed ID: 19439199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.