BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32085643)

  • 1. Validating Physiological and Biomechanical Parameters during Intermittent Swimming at Speed Corresponding to Lactate Concentration of 4 mmol·L
    Arsoniadis GG; Nikitakis IS; Botonis PG; Malliaros I; Toubekis AG
    Sports (Basel); 2020 Feb; 8(2):. PubMed ID: 32085643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verifying Physiological and Biomechanical Parameters during Continuous Swimming at Speed Corresponding to Lactate Threshold.
    Arsoniadis GG; Nikitakis IS; Botonis PG; Malliaros I; Toubekis AG
    Sports (Basel); 2020 Jun; 8(7):. PubMed ID: 32630146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute Resistance Exercise: Physiological and Biomechanical Alterations During a Subsequent Swim Training Session.
    Arsoniadis GG; Bogdanis GC; Terzis G; Toubekis AG
    Int J Sports Physiol Perform; 2020 Jan; 15(1):105-112. PubMed ID: 31034259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Responses of Continuous and Intermittent Swimming at Critical Speed and Maximum Lactate Steady State in Children and Adolescent Swimmers.
    Nikitakis IS; Paradisis GP; Bogdanis GC; Toubekis AG
    Sports (Basel); 2019 Jan; 7(1):. PubMed ID: 30669295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers.
    Lätt E; Jürimäe J; Mäestu J; Purge P; Rämson R; Haljaste K; Keskinen KL; Rodriguez FA; Jürimäe T
    J Sports Sci Med; 2010; 9(3):398-404. PubMed ID: 24149633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Incremental Intermittent and Time Trial Testing in Age-Group Swimmers.
    Zacca R; Azevedo R; Peterson Silveira R; Vilas-Boas JP; Pyne DB; Castro FAS; Fernandes RJ
    J Strength Cond Res; 2019 Mar; 33(3):801-810. PubMed ID: 28658078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in physiological and stroking parameters during interval swims at the slope of the d-t relationship.
    Ribeiro LF; Lima MC; Gobatto CA
    J Sci Med Sport; 2010 Jan; 13(1):141-5. PubMed ID: 19119067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is Swimmers' Performance Influenced by Wetsuit Use?
    Gay A; López-Contreras G; Fernandes RJ; Arellano R
    Int J Sports Physiol Perform; 2020 Jan; 15(1):46-51. PubMed ID: 30958047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptations to six months of aerobic swim training. Changes in velocity, stroke rate, stroke length and blood lactate.
    Wakayoshi K; Yoshida T; Ikuta Y; Mutoh Y; Miyashita M
    Int J Sports Med; 1993 Oct; 14(7):368-72. PubMed ID: 8244602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak.
    Costa MJ; Santos CC; Marinho DA; Silva AJ; Barbosa TM
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32210037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological Responses and Swimming Technique During Upper Limb Critical Stroke Rate Training in Competitive Swimmers.
    Funai Y; Matsunami M; Taba S
    J Hum Kinet; 2019 Nov; 70():61-68. PubMed ID: 31915476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swimming Training Assessment: The Critical Velocity and the 400-m Test for Age-Group Swimmers.
    Zacca R; Fernandes RJ; Pyne DB; Castro FA
    J Strength Cond Res; 2016 May; 30(5):1365-72. PubMed ID: 26473520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute effects of dryland muscular endurance and maximum strength training on sprint swimming performance in young swimmers.
    Arsoniadis GG; Botonis PG; Bogdanis GC; Terzis G; Toubekis AG
    J Sports Sci; 2024 Jun; ():1-9. PubMed ID: 38922324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stroke and physiological relationships during the incremental front crawl test: outcomes for planning and pacing aerobic training.
    Almeida TAF; Espada MC; Massini DA; Macedo AG; Castro EA; Ferreira CC; Reis JF; Pessôa Filho DM
    Front Physiol; 2023; 14():1241948. PubMed ID: 37645566
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparison of tests for measuring maximal exercise ability in elite swimmers.
    Suk MH; Yu KH; Shin YA
    J Exerc Rehabil; 2016 Jun; 12(3):209-15. PubMed ID: 27419117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability of coordination parameters at 400-m front crawl swimming pace.
    Schnitzler C; Seifert L; Chollet D
    J Sports Sci Med; 2009; 8(2):203-10. PubMed ID: 24149527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stroke phases responses around maximal lactate steady state in front crawl.
    Pelarigo JG; Denadai BS; Greco CC
    J Sci Med Sport; 2011 Mar; 14(2):168.e1-168.e5. PubMed ID: 20926340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises.
    Olbrecht J; Madsen O; Mader A; Liesen H; Hollmann W
    Int J Sports Med; 1985 Apr; 6(2):74-7. PubMed ID: 4008143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers.
    Laffite LP; Vilas-Boas JP; Demarle A; Silva J; Fernandes R; Billat VL
    Can J Appl Physiol; 2004; 29 Suppl():S17-31. PubMed ID: 15602082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can Blood Gas and Acid-Base Parameters at Maximal 200 Meters Front Crawl Swimming be Different Between Former Competitive and Recreational Swimmers?
    Kapus J; Usaj A; Strumbelj B; Kapus V
    J Sports Sci Med; 2008; 7(1):106-13. PubMed ID: 24150142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.