These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 32085656)

  • 1. Precise Point Positioning Algorithm for Pseudolite Combined with GNSS in a Constrained Observation Environment.
    Sheng C; Gan X; Yu B; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation and Analysis of Tightly Coupled Global Navigation Satellite System Precise Point Positioning/Inertial Navigation System (GNSS PPP/INS) with Insufficient Satellites for Land Vehicle Navigation.
    Liu Y; Liu F; Gao Y; Zhao L
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stand-alone and hybrid positioning using asynchronous pseudolites.
    Gioia C; Borio D
    Sensors (Basel); 2014 Dec; 15(1):166-93. PubMed ID: 25609041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doppler Differential Positioning Technology Using the BDS/GPS Indoor Array Pseudolite System.
    Gan X; Yu B; Huang L; Jia R; Zhang H; Sheng C; Fan G; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pseudolite-based positioning system for legacy GNSS receivers.
    Kim C; So H; Lee T; Kee C
    Sensors (Basel); 2014 Mar; 14(4):6104-23. PubMed ID: 24681674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Innovative Fingerprint Location Algorithm for Indoor Positioning Based on Array Pseudolite.
    Huang L; Gan X; Yu B; Zhang H; Li S; Cheng J; Liang X; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time Kinematic Positioning of INS Tightly Aided Multi-GNSS Ionospheric Constrained PPP.
    Gao Z; Shen W; Zhang H; Niu X; Ge M
    Sci Rep; 2016 Jul; 6():30488. PubMed ID: 27470270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking.
    Wang K; Chen P; Teunissen PJG
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris.
    Pan S; Chen W; Jin X; Shi X; He F
    Sensors (Basel); 2015 Jul; 15(7):17808-26. PubMed ID: 26205276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance.
    Jiao G; Song S; Ge Y; Su K; Liu Y
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter.
    Han H; Xu T; Wang J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments.
    Lyu Z; Gao Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionosphere-Constrained Single-Frequency PPP with an Android Smartphone and Assessment of GNSS Observations.
    Wang G; Bo Y; Yu Q; Li M; Yin Z; Chen Y
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33092084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments.
    Zhu R; Wang Y; Cao H; Yu B; Gan X; Huang L; Zhang H; Li S; Jia H; Chen J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Method of High-Precision Positioning for an Indoor Pseudolite without Using the Known Point Initialization.
    Zhao Y; Zhang P; Guo J; Li X; Wang J; Yang F; Wang X
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29925816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks.
    Nadarajah N; Khodabandeh A; Wang K; Choudhury M; Teunissen PJG
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost GNSS and PPP-RTK: Investigating the Capabilities of the u-blox ZED-F9P Module.
    Robustelli U; Cutugno M; Pugliano G
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Implementation of Precise Point Positioning (PPP): A Comprehensive Review.
    Elsheikh M; Iqbal U; Noureldin A; Korenberg M
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Multi-GNSS Precise Point Positioning Performance with Adverse Effects of Satellite Signals on Android Smartphone.
    Zhu H; Xia L; Wu D; Xia J; Li Q
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33187376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.