These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32085702)

  • 1. Comparative analysis of ChIP-exo peak-callers: impact of data quality, read duplication and binding subtypes.
    Sharma V; Majumdar S
    BMC Bioinformatics; 2020 Feb; 21(1):65. PubMed ID: 32085702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-learning optimized DEOCSU suite provides an iterable pipeline for accurate ChIP-exo peak calling.
    Bang I; Lee SM; Park S; Park JY; Nong LK; Gao Y; Palsson BO; Kim D
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Wide Approaches to Identify Protein-DNA Interactions.
    Ma T; Ye Z; Wang L
    Curr Med Chem; 2019; 26(42):7641-7654. PubMed ID: 29848263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates.
    Newell R; Pienaar R; Balderson B; Piper M; Essebier A; Bodén M
    Genomics; 2021 Jul; 113(4):1855-1866. PubMed ID: 33878366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MACE: model based analysis of ChIP-exo.
    Wang L; Chen J; Wang C; Uusküla-Reimand L; Chen K; Medina-Rivera A; Young EJ; Zimmermann MT; Yan H; Sun Z; Zhang Y; Wu ST; Huang H; Wilson MD; Kocher JP; Li W
    Nucleic Acids Res; 2014 Nov; 42(20):e156. PubMed ID: 25249628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population size estimation for quality control of ChIP-Seq datasets.
    Kolmykov SK; Kondrakhin YV; Yevshin IS; Sharipov RN; Ryabova AS; Kolpakov FA
    PLoS One; 2019; 14(8):e0221760. PubMed ID: 31465497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical characterisation of strand cross-correlation in ChIP-seq.
    Anzawa H; Yamagata H; Kinoshita K
    BMC Bioinformatics; 2020 Sep; 21(1):417. PubMed ID: 32962634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering unknown human and mouse transcription factor binding sites and their characteristics from ChIP-seq data.
    Yu CP; Kuo CH; Nelson CW; Chen CA; Soh ZT; Lin JJ; Hsiao RX; Chang CY; Li WH
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33975951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIP-AP: an integrated analysis pipeline for unbiased ChIP-seq analysis.
    Suryatenggara J; Yong KJ; Tenen DE; Tenen DG; Bassal MA
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34965583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ritornello: high fidelity control-free chromatin immunoprecipitation peak calling.
    Stanton KP; Jin J; Lederman RR; Weissman SM; Kluger Y
    Nucleic Acids Res; 2017 Dec; 45(21):e173. PubMed ID: 28981893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing protein-DNA binding event subtypes in ChIP-exo data.
    Yamada N; Lai WKM; Farrell N; Pugh BF; Mahony S
    Bioinformatics; 2019 Mar; 35(6):903-913. PubMed ID: 30165373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package.
    Levitsky V; Zemlyanskaya E; Oshchepkov D; Podkolodnaya O; Ignatieva E; Grosse I; Mironova V; Merkulova T
    Nucleic Acids Res; 2019 Dec; 47(21):e139. PubMed ID: 31750523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PeakRanger: a cloud-enabled peak caller for ChIP-seq data.
    Feng X; Grossman R; Stein L
    BMC Bioinformatics; 2011 May; 12():139. PubMed ID: 21554709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PeakXus: comprehensive transcription factor binding site discovery from ChIP-Nexus and ChIP-Exo experiments.
    Hartonen T; Sahu B; Dave K; Kivioja T; Taipale J
    Bioinformatics; 2016 Sep; 32(17):i629-i638. PubMed ID: 27587683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection.
    Oh D; Strattan JS; Hur JK; Bento J; Urban AE; Song G; Cherry JM
    Sci Rep; 2020 May; 10(1):7933. PubMed ID: 32404971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of factors associated with duplicate rate in ChIP-seq data.
    Tian S; Peng S; Kalmbach M; Gaonkar KS; Bhagwate A; Ding W; Eckel-Passow J; Yan H; Slager SL
    PLoS One; 2019; 14(4):e0214723. PubMed ID: 30943272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks.
    Hansen P; Hecht J; Ibrahim DM; Krannich A; Truss M; Robinson PN
    Genome Res; 2015 Sep; 25(9):1391-400. PubMed ID: 26163319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.