These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32086178)

  • 41. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.
    Dhar BR; Elbeshbishy E; Hafez H; Lee HS
    Bioresour Technol; 2015 Dec; 198():223-30. PubMed ID: 26398665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - A review.
    Karthikeyan R; Cheng KY; Selvam A; Bose A; Wong JWC
    Biotechnol Adv; 2017 Nov; 35(6):758-771. PubMed ID: 28709875
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells - Influence of Acetate and Propionate Concentration.
    Hari AR; Venkidusamy K; Katuri KP; Bagchi S; Saikaly PE
    Front Microbiol; 2017; 8():1371. PubMed ID: 28775719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.
    Kim JR; Cheng S; Oh SE; Logan BE
    Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrogen production using single-chamber membrane-free microbial electrolysis cells.
    Hu H; Fan Y; Liu H
    Water Res; 2008 Sep; 42(15):4172-8. PubMed ID: 18718624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent Advances and Challenges in Anion Exchange Membranes Development/Application for Water Electrolysis: A Review.
    Liu L; Ma H; Khan M; Hsiao BS
    Membranes (Basel); 2024 Apr; 14(4):. PubMed ID: 38668113
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up.
    Kitching M; Butler R; Marsili E
    Enzyme Microb Technol; 2017 Jan; 96():1-13. PubMed ID: 27871368
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of different substrates on microbial electrolysis cell (MEC) anodic membrane: biodiversity and hydrogen production performance.
    Shao Q; Li J; Yang S; Sun H
    Water Sci Technol; 2019 Mar; 79(6):1123-1133. PubMed ID: 31070592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced performance of bioelectrochemical hydrogen production using a pH control strategy.
    Ruiz Y; Baeza JA; Guisasola A
    ChemSusChem; 2015 Jan; 8(2):389-97. PubMed ID: 25469743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing proton transport in polyvinylidenedifluoride membranes and reducing biofouling for improved hydrogen production in microbial electrolysis cells.
    Zhao N; Meng S; Li X; Liu H; Liang D
    Bioresour Technol; 2024 Jun; 402():130842. PubMed ID: 38750828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.
    Lu L; Xing D; Ren N
    Water Res; 2012 May; 46(7):2425-34. PubMed ID: 22374298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells.
    Cheng D; Ngo HH; Guo W; Chang SW; Nguyen DD; Zhang S; Deng S; An D; Hoang NB
    Bioresour Technol; 2022 Feb; 346():126588. PubMed ID: 34929329
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.
    Yang Z; Hou J; Wang X; Wu L; Xu T
    Macromol Rapid Commun; 2015 Jul; 36(14):1362-7. PubMed ID: 25962480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.
    Zeng X; Borole AP; Pavlostathis SG
    Environ Sci Technol; 2015 Nov; 49(22):13667-75. PubMed ID: 26503792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biohydrogen Production in Microbial Electrolysis Cell Operating on Designed Consortium of Denitrifying Bacteria.
    Ekadewi P; Arbianti R; Gomez C; Utami TS
    Food Technol Biotechnol; 2023 Mar; 61(1):4-13. PubMed ID: 37200786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.
    Liu G; Zhou Y; Luo H; Cheng X; Zhang R; Teng W
    Bioresour Technol; 2015 Dec; 198():87-93. PubMed ID: 26367771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.
    Chookaew T; Prasertsan P; Ren ZJ
    N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.