These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 32086309)

  • 1. Inactivation Efficacies and Mechanisms of Gas Plasma and Plasma-Activated Water against Aspergillus flavus Spores and Biofilms: a Comparative Study.
    Los A; Ziuzina D; Boehm D; Cullen PJ; Bourke P
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32086309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold atmospheric plasma inactivates
    Roberts D; Thomas J; Salmon J; Cubeta MA; Stapelmann K; Gilger BC
    J Med Microbiol; 2024 Jul; 73(7):. PubMed ID: 38985505
    [No Abstract]   [Full Text] [Related]  

  • 3. High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin.
    Ott LC; Appleton HJ; Shi H; Keener K; Mellata M
    Food Microbiol; 2021 May; 95():103669. PubMed ID: 33397632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor.
    Dasan BG; Mutlu M; Boyaci IH
    Int J Food Microbiol; 2016 Jan; 216():50-9. PubMed ID: 26398284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ( E)-2-Hexenal, as a Potential Natural Antifungal Compound, Inhibits Aspergillus flavus Spore Germination by Disrupting Mitochondrial Energy Metabolism.
    Ma W; Zhao L; Zhao W; Xie Y
    J Agric Food Chem; 2019 Jan; 67(4):1138-1145. PubMed ID: 30614691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce.
    Patange A; Boehm D; Ziuzina D; Cullen PJ; Gilmore B; Bourke P
    Int J Food Microbiol; 2019 Mar; 293():137-145. PubMed ID: 30711711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS Involves the Fungicidal Actions of Thymol against Spores of Aspergillus flavus via the Induction of Nitric Oxide.
    Shen Q; Zhou W; Li H; Hu L; Mo H
    PLoS One; 2016; 11(5):e0155647. PubMed ID: 27196096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Fungal Growth and Aflatoxin B
    Yao Q; Xu H; Zhuang J; Cui D; Ma R; Jiao Z
    Foods; 2023 Jun; 12(13):. PubMed ID: 37444228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial decontamination of red pepper powder by cold plasma.
    Kim JE; Lee DU; Min SC
    Food Microbiol; 2014 Apr; 38():128-36. PubMed ID: 24290635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of aflatoxin B1 and ochratoxin A in interacting mixed cultures of Aspergillus sections Flavi and Nigri on peanut grains.
    Barberis CL; Dalcero AM; Magnoli CE
    Mycotoxin Res; 2012 Aug; 28(3):149-56. PubMed ID: 23606121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial effects of airborne acoustic ultrasound and plasma activated water from cold and thermal plasma systems on biofilms.
    Charoux CMG; Patange AD; Hinds LM; Simpson JC; O'Donnell CP; Tiwari BK
    Sci Rep; 2020 Oct; 10(1):17297. PubMed ID: 33057158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous extracts of Tulbaghia violacea inhibit germination of Aspergillus flavus and Aspergillus parasiticus conidia.
    Somai BM; Belewa V
    J Food Prot; 2011 Jun; 74(6):1007-11. PubMed ID: 21669082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatile trans-2-hexenal, a soybean aldehyde, inhibits Aspergillus flavus growth and aflatoxin production in corn.
    De Lucca AJ; Carter-Wientjes CH; Boué S; Bhatnagar D
    J Food Sci; 2011 Aug; 76(6):M381-6. PubMed ID: 22417509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of citral on Aspergillus flavus spores by quasi-elastic light scattering and multiplex microanalysis techniques.
    Luo M; Jiang LK; Huang YX; Xiao M; Li B; Zou GL
    Acta Biochim Biophys Sin (Shanghai); 2004 Apr; 36(4):277-83. PubMed ID: 15253153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of filamentous fungal biofilms in water and the transformation of resistance to chlor(am)ine disinfection.
    Chang B; Wan Q; Wu G; Cheng Y; Wang J; Huang T; Wen G
    J Hazard Mater; 2024 Sep; 476():135138. PubMed ID: 38996681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomics analyses and biochemical characterization of Aspergillus flavus spores exposed to 1-nonanol.
    Qin YL; Zhang SB; Lv YY; Zhai HC; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2091-2106. PubMed ID: 35179628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on the antifungal effect of nerol against Aspergillus flavus causing food spoilage.
    Tian J; Zeng X; Zeng H; Feng Z; Miao X; Peng X
    ScientificWorldJournal; 2013; 2013():230795. PubMed ID: 24453813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Characterization, and Antifungal Activity of Benzimidazole-Grafted Chitosan against
    Liu J; Chen H; Lv Y; Wu H; Yang LJ; Zhang J; Huang J; Wang W
    J Agric Food Chem; 2024 May; 72(19):11185-11194. PubMed ID: 38687832
    [No Abstract]   [Full Text] [Related]  

  • 19. Inactivation Mechanism of
    Hsiao YT; Chen BY; Huang HW; Wang CY
    Foodborne Pathog Dis; 2021 Feb; 18(2):123-130. PubMed ID: 33544050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli.
    Ziuzina D; Han L; Cullen PJ; Bourke P
    Int J Food Microbiol; 2015 Oct; 210():53-61. PubMed ID: 26093991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.