BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32086536)

  • 41. Phenotypic and molecular differences between giant-cell tumour of soft tissue and its bone counterpart.
    Mancini I; Righi A; Gambarotti M; Picci P; Dei Tos AP; Billings SD; Simi L; Franchi A
    Histopathology; 2017 Sep; 71(3):453-460. PubMed ID: 28477388
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Differential diagnosis of giant cell-rich lesions of bone].
    Lang S
    Pathologe; 2008 Nov; 29 Suppl 2():245-9. PubMed ID: 18836722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF.
    Knowles HJ; Athanasou NA
    J Pathol; 2008 May; 215(1):56-66. PubMed ID: 18283716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone. Possible involvement in osteoclast-like cell migration.
    Zheng MH; Fan Y; Wysocki SJ; Lau AT; Robertson T; Beilharz M; Wood DJ; Papadimitriou JM
    Am J Pathol; 1994 Nov; 145(5):1095-104. PubMed ID: 7977641
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts.
    Liu B; Yu SF; Li TJ
    J Oral Pathol Med; 2003 Jul; 32(6):367-75. PubMed ID: 12787044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Giant cell tumor of bone: a basic science perspective.
    Cowan RW; Singh G
    Bone; 2013 Jan; 52(1):238-46. PubMed ID: 23063845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immunohistochemistry for histone H3G34W and H3K36M is highly specific for giant cell tumor of bone and chondroblastoma, respectively, in FNA and core needle biopsy.
    Schaefer IM; Fletcher JA; Nielsen GP; Shih AR; Ferrone ML; Hornick JL; Qian X
    Cancer Cytopathol; 2018 Aug; 126(8):552-566. PubMed ID: 29757500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clinical and pathological results of denosumab treatment for giant cell tumors of bone: Prospective study of 14 cases.
    Deveci MA; Paydaş S; Gönlüşen G; Özkan C; Biçer ÖS; Tekin M
    Acta Orthop Traumatol Turc; 2017 Jan; 51(1):1-6. PubMed ID: 27784623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Receptor activator of NF-kappaB ligand (RANKL) is expressed in chondroblastoma: possible involvement in osteoclastic giant cell recruitment.
    Huang L; Cheng YY; Chow LT; Zheng MH; Kumta SM
    Mol Pathol; 2003 Apr; 56(2):116-20. PubMed ID: 12665629
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Histone 3.3 mutations in giant cell tumor and giant cell-rich sarcomas of bone.
    Righi A; Mancini I; Gambarotti M; Picci P; Gamberi G; Marraccini C; Dei Tos AP; Simi L; Pinzani P; Franchi A
    Hum Pathol; 2017 Oct; 68():128-135. PubMed ID: 28899740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The two faces of giant cell tumor of bone.
    Scotto di Carlo F; Whyte MP; Gianfrancesco F
    Cancer Lett; 2020 Oct; 489():1-8. PubMed ID: 32502498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epigenetic lockdown of CDKN1A (p21) and CDKN2A (p16) characterises the neoplastic spindle cell component of giant cell tumours of bone.
    Giesche J; Mellert K; Geißler S; Arndt S; Seeling C; von Baer A; Schultheiss M; Marienfeld R; Möller P; Barth TF
    J Pathol; 2022 Aug; 257(5):687-696. PubMed ID: 35522566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clinicopathological Features of a Series of 27 Cases of Post-Denosumab Treated Giant Cell Tumors of Bones: A Single Institutional Experience at a Tertiary Cancer Referral Centre, India.
    Rekhi B; Verma V; Gulia A; Jambhekar NA; Desai S; Juvekar SL; Bajpai J; Puri A
    Pathol Oncol Res; 2017 Jan; 23(1):157-164. PubMed ID: 27722984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Osteoblast lineage properties in giant cell tumors of bone.
    Murata A; Fujita T; Kawahara N; Tsuchiya H; Tomita K
    J Orthop Sci; 2005 Nov; 10(6):581-8. PubMed ID: 16307183
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation.
    Hiruma Y; Hirai T; Tsuda E
    Biochem Biophys Res Commun; 2011 Jun; 409(3):424-9. PubMed ID: 21586272
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Challenges of denosumab in giant cell tumor of bone, and other giant cell-rich tumors of bone.
    Lipplaa A; Dijkstra S; Gelderblom H
    Curr Opin Oncol; 2019 Jul; 31(4):329-335. PubMed ID: 30844887
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Translational Study of the Neoplastic Cells of Giant Cell Tumor of Bone Following Neoadjuvant Denosumab.
    Mak IW; Evaniew N; Popovic S; Tozer R; Ghert M
    J Bone Joint Surg Am; 2014 Aug; 96(15):e127. PubMed ID: 25100780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sustained autocrine induction and impaired negative feedback of osteoclastogenesis in CD14(+) cells of giant cell tumor of bone.
    Avnet S; Salerno M; Zini N; Alberghini M; Gibellini D; Baldini N
    Am J Pathol; 2013 Apr; 182(4):1357-66. PubMed ID: 23395086
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Giant cell tumour of bone.
    Thomas DM; Skubitz KM
    Curr Opin Oncol; 2009 Jul; 21(4):338-44. PubMed ID: 19444102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Giant cell tumour of bone: new treatments in development.
    López-Pousa A; Martín Broto J; Garrido T; Vázquez J
    Clin Transl Oncol; 2015 Jun; 17(6):419-30. PubMed ID: 25617146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.