BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32086666)

  • 21. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources.
    Wu L; Prins HJ; Helder MN; van Blitterswijk CA; Karperien M
    Tissue Eng Part A; 2012 Aug; 18(15-16):1542-51. PubMed ID: 22429306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III Collagen Sponges.
    Gómez-Leduc T; Desancé M; Hervieu M; Legendre F; Ollitrault D; de Vienne C; Herlicoviez M; Galéra P; Demoor M
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28885597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells in a three-dimensional environment.
    Salonius E; Kontturi L; Laitinen A; Haaparanta AM; Korhonen M; Nystedt J; Kiviranta I; Muhonen V
    J Cell Physiol; 2020 Apr; 235(4):3497-3507. PubMed ID: 31552691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cartilage tissue engineering using dermis isolated adult stem cells: the use of hypoxia during expansion versus chondrogenic differentiation.
    Kalpakci KN; Brown WE; Hu JC; Athanasiou KA
    PLoS One; 2014; 9(5):e98570. PubMed ID: 24867063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osteoarthritic cartilage explants affect extracellular matrix production and composition in cocultured bone marrow-derived mesenchymal stem cells and articular chondrocytes.
    Leyh M; Seitz A; Dürselen L; Springorum HR; Angele P; Ignatius A; Grifka J; Grässel S
    Stem Cell Res Ther; 2014 Jun; 5(3):77. PubMed ID: 24916039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells.
    Lin YM; Lim JF; Lee J; Choolani M; Chan JK; Reuveny S; Oh SK
    Cytotherapy; 2016 Jun; 18(6):740-53. PubMed ID: 27173750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remodeling of Glycosaminoglycans During Differentiation of Adult Human Bone Mesenchymal Stromal Cells Toward Hepatocytes.
    Mikael PE; Willard C; Koyee A; Barlao CG; Liu X; Han X; Ouyang Y; Xia K; Linhardt RJ; Dordick JS
    Stem Cells Dev; 2019 Feb; 28(4):278-289. PubMed ID: 30572803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells.
    Bae HC; Park HJ; Wang SY; Yang HR; Lee MC; Han HS
    Biomater Res; 2018; 22():28. PubMed ID: 30275971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds.
    Meretoja VV; Dahlin RL; Wright S; Kasper FK; Mikos AG
    Biomaterials; 2013 Jun; 34(17):4266-73. PubMed ID: 23489925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells.
    Cheng K; Zhu Y; Wang D; Li Y; Xu X; Cai H; Chu H; Li J; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111368. PubMed ID: 32919697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesenchymal Stromal Cell Differentiation for Generating Cartilage and Bone-Like Tissues In Vitro.
    Monaco G; Ladner YD; El Haj AJ; Forsyth NR; Alini M; Stoddart MJ
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation.
    Moura CS; Silva JC; Faria S; Fernandes PR; da Silva CL; Cabral JMS; Linhardt R; Bártolo PJ; Ferreira FC
    J Biosci Bioeng; 2020 Jun; 129(6):756-764. PubMed ID: 32107152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synoviocyte Derived-Extracellular Matrix Enhances Human Articular Chondrocyte Proliferation and Maintains Re-Differentiation Capacity at Both Low and Atmospheric Oxygen Tensions.
    Kean TJ; Dennis JE
    PLoS One; 2015; 10(6):e0129961. PubMed ID: 26075742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of oxygen and culture system on in vitro propagation and redifferentiation of osteoarthritic human articular chondrocytes.
    Schrobback K; Klein TJ; Crawford R; Upton Z; Malda J; Leavesley DI
    Cell Tissue Res; 2012 Mar; 347(3):649-63. PubMed ID: 21638206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Higher Chondrogenic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells Compared to Chondrocytes-EVs In Vitro.
    Hosseinzadeh M; Kamali A; Hosseini S; Baghaban Eslaminejad M
    Biomed Res Int; 2021; 2021():9011548. PubMed ID: 34938811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNA-27b targets CBFB to inhibit differentiation of human bone marrow mesenchymal stem cells into hypertrophic chondrocytes.
    Lv S; Xu J; Chen L; Wu H; Feng W; Zheng Y; Li P; Zhang H; Zhang L; Chi G; Li Y
    Stem Cell Res Ther; 2020 Sep; 11(1):392. PubMed ID: 32917285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inverse regulation of early and late chondrogenic differentiation by oxygen tension provides cues for stem cell-based cartilage tissue engineering.
    Portron S; Hivernaud V; Merceron C; Lesoeur J; Masson M; Gauthier O; Vinatier C; Beck L; Guicheux J
    Cell Physiol Biochem; 2015; 35(3):841-57. PubMed ID: 25632940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study.
    Bornes TD; Adesida AB; Jomha NM
    Tissue Eng Part A; 2018 May; 24(9-10):761-774. PubMed ID: 28982297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.