These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32086691)

  • 1. The Dual-Targeting Activity of the Metabolite Substrate of Para-amino Salicyclic Acid in the Mycobacterial Folate Pathway: Atomistic and Structural Perspectives.
    Agoni C; Ramharack P; Salifu EY; Soliman MES
    Protein J; 2020 Apr; 39(2):106-117. PubMed ID: 32086691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drugging the Folate Pathway in Mycobacterium tuberculosis: The Role of Multi-targeting Agents.
    Hajian B; Scocchera E; Shoen C; Krucinska J; Viswanathan K; G-Dayanandan N; Erlandsen H; Estrada A; Mikušová K; Korduláková J; Cynamon M; Wright D
    Cell Chem Biol; 2019 Jun; 26(6):781-791.e6. PubMed ID: 30930162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insights into Mycobacterium tuberculosis Rv2671 Protein as a Dihydrofolate Reductase Functional Analogue Contributing to para-Aminosalicylic Acid Resistance.
    Cheng YS; Sacchettini JC
    Biochemistry; 2016 Feb; 55(7):1107-19. PubMed ID: 26848874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis.
    Zheng J; Rubin EJ; Bifani P; Mathys V; Lim V; Au M; Jang J; Nam J; Dick T; Walker JR; Pethe K; Camacho LR
    J Biol Chem; 2013 Aug; 288(32):23447-56. PubMed ID: 23779105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico structure-based design of a novel class of potent and selective small peptide inhibitor of Mycobacterium tuberculosis Dihydrofolate reductase, a potential target for anti-TB drug discovery.
    Kumar M; Vijayakrishnan R; Subba Rao G
    Mol Divers; 2010 Aug; 14(3):595-604. PubMed ID: 19697148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potency boost of a
    Aragaw WW; Lee BM; Yang X; Zimmerman MD; Gengenbacher M; Dartois V; Chui WK; Jackson CJ; Dick T
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.
    Shelke RU; Degani MS; Raju A; Ray MK; Rajan MG
    Arch Pharm (Weinheim); 2016 Aug; 349(8):602-13. PubMed ID: 27320965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs.
    Li R; Sirawaraporn R; Chitnumsub P; Sirawaraporn W; Wooden J; Athappilly F; Turley S; Hol WG
    J Mol Biol; 2000 Jan; 295(2):307-23. PubMed ID: 10623528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase.
    Kumar VP; Cisneros JA; Frey KM; Castellanos-Gonzalez A; Wang Y; Gangjee A; White AC; Jorgensen WL; Anderson KS
    Bioorg Med Chem Lett; 2014 Sep; 24(17):4158-61. PubMed ID: 25127103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis.
    Hajian B; Scocchera E; Keshipeddy S; G-Dayanandan N; Shoen C; Krucinska J; Reeve S; Cynamon M; Anderson AC; Wright DL
    PLoS One; 2016; 11(8):e0161740. PubMed ID: 27580226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis.
    El-Hamamsy MH; Smith AW; Thompson AS; Threadgill MD
    Bioorg Med Chem; 2007 Jul; 15(13):4552-76. PubMed ID: 17451962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of 5-deazapteridine derivatives with Mycobacterium tuberculosis and with human dihydrofolate reductases.
    da Cunha EF; de Castro Ramalho T; Bicca de Alencastro R; Maia ER
    J Biomol Struct Dyn; 2004 Oct; 22(2):119-30. PubMed ID: 15317473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate.
    Senkovich O; Schormann N; Chattopadhyay D
    Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):704-16. PubMed ID: 19564691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel selective Mtb-DHFR inhibitors as antitubercular agents through structure-based computational techniques.
    Sharma K; Neshat N; Sharma S; Giri N; Srivastava A; Almalki F; Saifullah K; Alam MM; Shaquiquzzaman M; Akhter M
    Arch Pharm (Weinheim); 2020 Feb; 353(2):e1900287. PubMed ID: 31867798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, molecular docking study and biological evaluation of new pyrrole scaffolds as potential antitubercular agents for dual targeting of enoyl ACP reductase and dihydrofolate reductase.
    Mahnashi MH; Avunoori S; Gopi S; Shaikh IA; Saif A; Bantun F; Faidah HS; Alhadi AA; Alshehri JH; Alharbi AA; S R PK; Joshi SD
    PLoS One; 2024; 19(5):e0303173. PubMed ID: 38739587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative mapping of on-targets and off-targets for the discovery of anti-trypanosomatid folate pathway inhibitors.
    Panecka-Hofman J; Pöhner I; Spyrakis F; Zeppelin T; Di Pisa F; Dello Iacono L; Bonucci A; Quotadamo A; Venturelli A; Mangani S; Costi MP; Wade RC
    Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3215-3230. PubMed ID: 28939533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.
    Arooj M; Sakkiah S; Cao Gp; Lee KW
    PLoS One; 2013; 8(4):e60470. PubMed ID: 23577115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis.
    Chakraborty S; Gruber T; Barry CE; Boshoff HI; Rhee KY
    Science; 2013 Jan; 339(6115):88-91. PubMed ID: 23118010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticancer antifolates: current status and future directions.
    McGuire JJ
    Curr Pharm Des; 2003; 9(31):2593-613. PubMed ID: 14529544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria.
    Rengarajan J; Sassetti CM; Naroditskaya V; Sloutsky A; Bloom BR; Rubin EJ
    Mol Microbiol; 2004 Jul; 53(1):275-82. PubMed ID: 15225321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.