These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32086705)

  • 1. Enzyme Immobilization over Polystyrene Surface Using Cysteine Functionalized Copper Nanoparticle as a Linker Molecule.
    Kumar N; Upadhyay LSB
    Appl Biochem Biotechnol; 2020 Jul; 191(3):1247-1257. PubMed ID: 32086705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Covalent immobilization of urease on polysiloxane templates containing 3-aminopropyl and 3-mercaptopropyl groups].
    Pogorilyĭ RP; Goncharik VP; Kozhara LI; Zub IuL
    Prikl Biokhim Mikrobiol; 2008; 44(6):621-5. PubMed ID: 19145967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Fe
    Ulu A; Noma SAA; Koytepe S; Ates B
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1035-1045. PubMed ID: 29873527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of endoglucanase on kaolin by adsorption and covalent bonding.
    de Souza Lima J; Boemo APSI; de Araújo PHH; de Oliveira D
    Bioprocess Biosyst Eng; 2021 Aug; 44(8):1627-1637. PubMed ID: 33686500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization.
    Upadhyay LS; Verma N
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2139-48. PubMed ID: 24760173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of immobilized urease enzyme on porous polymer for enhancing the stability, reusability and enzymatic kinetics using response surface methodology.
    Sahin B; Ozbey-Unal B; Dizge N; Keskinler B; Balcik C
    Colloids Surf B Biointerfaces; 2024 Aug; 240():113986. PubMed ID: 38795587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation.
    Muthuvelu KS; Rajarathinam R; Selvaraj RN; Rajendren VB
    Int J Biol Macromol; 2020 Jun; 152():1098-1107. PubMed ID: 31751696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification and characterization of cellulosic cotton fibers for efficient immobilization of urease.
    Monier M; El-Sokkary AM
    Int J Biol Macromol; 2012; 51(1-2):18-24. PubMed ID: 22564966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of enzymes on iron oxide magnetic nanoparticles: Synthesis, characterization, kinetics and thermodynamics.
    Muley AB; Mulchandani KH; Singhal RS
    Methods Enzymol; 2020; 630():39-79. PubMed ID: 31931995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, procerain B.
    Singh AN; Singh S; Suthar N; Dubey VK
    J Agric Food Chem; 2011 Jun; 59(11):6256-62. PubMed ID: 21528916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.
    Garg S; De A; Mozumdar S
    J Biomed Mater Res A; 2015 May; 103(5):1771-83. PubMed ID: 25227875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability evaluation of 6-phosphogluconate dehydrogenase immobilized on amino-functionalized magnetic nanoparticles.
    Sahin S
    Prep Biochem Biotechnol; 2019; 49(6):590-596. PubMed ID: 30929562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.
    Ispirli Doğaç Y; Deveci I; Teke M; Mercimek B
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():429-35. PubMed ID: 25063138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization.
    Cui Y; Li Y; Yang Y; Liu X; Lei L; Zhou L; Pan F
    J Biotechnol; 2010 Oct; 150(1):171-4. PubMed ID: 20638425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization.
    Torabi SF; Khajeh K; Ghasempur S; Ghaemi N; Siadat SO
    J Biotechnol; 2007 Aug; 131(2):111-20. PubMed ID: 17658643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of casein from different sources by immobilized trypsin on biochar: Effect of immobilization method.
    Souza Júnior EC; Santos MPF; Sampaio VS; Ferrão SPB; Fontan RCI; Bonomo RCF; Veloso CM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jun; 1146():122124. PubMed ID: 32361468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of β-galactosidase on novel polymers having Schiff bases.
    Aynacı E; Sarı N; Tümtürk H
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug; 39(4):259-66. PubMed ID: 21323488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of Pycnoporus sanguineus laccase on copper tetra-aminophthalocyanine-Fe(3)O(4) nanoparticle composite.
    Huang J; Xiao H; Li B; Wang J; Jiang D
    Biotechnol Appl Biochem; 2006 May; 44(Pt 2):93-100. PubMed ID: 16420188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new strategy for the controlled deposition of gold nanoparticle aggregates on two-dimensional polystyrene arrays and its application in glucose oxidase immobilization.
    Xia Y; Li J; Jiang L
    J Colloid Interface Sci; 2012 Jul; 377(1):34-9. PubMed ID: 22498366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles.
    Aggarwal V; Pundir CS
    Methods Enzymol; 2016; 571():197-223. PubMed ID: 27112401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.