BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32086752)

  • 1. Establishment and characterization of silver-resistant Enterococcus faecalis.
    Cui J; Sun Q; Duan M; Liu D; Fan W
    Folia Microbiol (Praha); 2020 Aug; 65(4):721-733. PubMed ID: 32086752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simvastatin decreases the silver resistance of E. faecalis through compromising the entrapping function of extracellular polymeric substances against silver.
    Cui J; Duan M; Sun Q; Fan W
    World J Microbiol Biotechnol; 2020 Mar; 36(4):54. PubMed ID: 32172435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of Triton X-100 reducing the Ag
    Lv S; Duan M; Fan B; Fan W
    World J Microbiol Biotechnol; 2024 Jun; 40(7):231. PubMed ID: 38833075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of an Enterococcus faecalis mutant generated against the exposure to silver nanoparticles.
    Salas-Orozco MF; Niño-Martínez N; Martínez-Castañón GA; Méndez FT; Morán GMM; Bendaña-Piñeiro AE; Ruiz F; Bach H
    J Appl Microbiol; 2022 Jan; 132(1):244-255. PubMed ID: 34134177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biologically rapid synthesis of silver nanoparticles by
    Akter S; Huq MA
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):672-682. PubMed ID: 32075448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial activity of endodontic sealers and medications containing chitosan and silver nanoparticles against
    Loyola-Rodríguez JP; Torres-Méndez F; Espinosa-Cristobal LF; García-Cortes JO; Loyola-Leyva A; González FJ; Soto-Barreras U; Nieto-Aguilar R; Contreras-Palma G
    J Appl Biomater Funct Mater; 2019; 17(3):2280800019851771. PubMed ID: 31373255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-antibiotic based on silver nanoparticles functionalized to the vancomycin-cysteamine complex for treating Staphylococcus aureus and Enterococcus faecalis.
    Veriato TS; Fontoura I; Oliveira LD; Raniero LJ; Castilho ML
    Pharmacol Rep; 2023 Aug; 75(4):951-961. PubMed ID: 37171518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential.
    Anjugam M; Vaseeharan B; Iswarya A; Divya M; Prabhu NM; Sankaranarayanan K
    Microb Pathog; 2018 Feb; 115():31-40. PubMed ID: 29208541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus.
    de Moraes AC; Lima BA; de Faria AF; Brocchi M; Alves OL
    Int J Nanomedicine; 2015; 10():6847-61. PubMed ID: 26586946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic mechanism of Ag
    Fan W; Sun Q; Li Y; Tay FR; Fan B
    J Nanobiotechnology; 2018 Jan; 16(1):10. PubMed ID: 29386060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green Synthesis of Silver Nanoparticles Using
    Huq MA
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial, antibiofilm, and antiquorum sensing activities of phytosynthesized silver nanoparticles fabricated from Mespilus germanica extract against multidrug resistance of Klebsiella pneumoniae clinical strains.
    Foroohimanjili F; Mirzaie A; Hamdi SMM; Noorbazargan H; Hedayati Ch M; Dolatabadi A; Rezaie H; Bishak FM
    J Basic Microbiol; 2020 Mar; 60(3):216-230. PubMed ID: 31994223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positively charged imidazolium-based ionic liquid-protected silver nanoparticles: a promising disinfectant in root canal treatment.
    Abbaszadegan A; Nabavizadeh M; Gholami A; Aleyasin ZS; Dorostkar S; Saliminasab M; Ghasemi Y; Hemmateenejad B; Sharghi H
    Int Endod J; 2015 Aug; 48(8):790-800. PubMed ID: 25269666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Antibiofilm Activity and Mechanism of Nanosilver- and Nanozinc-Incorporated Mesoporous Calcium-Silicate Nanoparticles.
    Leng D; Li Y; Zhu J; Liang R; Zhang C; Zhou Y; Li M; Wang Y; Rong D; Wu D; Li J
    Int J Nanomedicine; 2020; 15():3921-3936. PubMed ID: 32581537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating.
    Clauss-Lendzian E; Vaishampayan A; de Jong A; Landau U; Meyer C; Kok J; Grohmann E
    Microbiol Res; 2018 Mar; 207():53-64. PubMed ID: 29458868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm.
    Wu D; Fan W; Kishen A; Gutmann JL; Fan B
    J Endod; 2014 Feb; 40(2):285-90. PubMed ID: 24461420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge.
    Mandal D; Kumar Dash S; Das B; Chattopadhyay S; Ghosh T; Das D; Roy S
    Biomed Pharmacother; 2016 Oct; 83():548-558. PubMed ID: 27449536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca-Si mesoporous nanoparticles with the optimal Ag-Zn ratio inhibit the
    Sun Q; Duan M; Fan W; Fan B
    J Mater Chem B; 2021 Mar; 9(9):2200-2211. PubMed ID: 33447835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effects of silver ions and metformin against enterococcus faecalis under high-glucose conditions in vitro.
    Wu X; Fan W; Fan B
    BMC Microbiol; 2021 Sep; 21(1):261. PubMed ID: 34587895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens.
    Mohanta YK; Nayak D; Biswas K; Singdevsachan SK; Abd Allah EF; Hashem A; Alqarawi AA; Yadav D; Mohanta TK
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29538308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.