BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32086870)

  • 1. Ultrastructural insights into pathogen clearance by autophagy.
    Kishi-Itakura C; Ktistakis NT; Buss F
    Traffic; 2020 Apr; 21(4):310-323. PubMed ID: 32086870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ snapshots along a mammalian selective autophagy pathway.
    Li M; Tripathi-Giesgen I; Schulman BA; Baumeister W; Wilfling F
    Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2221712120. PubMed ID: 36917659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring Ubiquitin-Coated Bacteria via Confocal Microscopy.
    Lork M; Delvaeye M; Gonçalves A; Van Hamme E; Beyaert R
    Methods Mol Biol; 2016; 1449():243-50. PubMed ID: 27613040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Salmonella induces aggrephagy of host endomembranes in persistent infections.
    López-Montero N; Ramos-Marquès E; Risco C; García-Del Portillo F
    Autophagy; 2016 Oct; 12(10):1886-1901. PubMed ID: 27485662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual function of CALCOCO2/NDP52 during xenophagy.
    Verlhac P; Viret C; Faure M
    Autophagy; 2015; 11(6):965-6. PubMed ID: 25998689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole.
    Birmingham CL; Smith AC; Bakowski MA; Yoshimori T; Brumell JH
    J Biol Chem; 2006 Apr; 281(16):11374-83. PubMed ID: 16495224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation.
    van Wijk SJL; Fricke F; Herhaus L; Gupta J; Hötte K; Pampaloni F; Grumati P; Kaulich M; Sou YS; Komatsu M; Greten FR; Fulda S; Heilemann M; Dikic I
    Nat Microbiol; 2017 May; 2():17066. PubMed ID: 28481361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of TGF-β-activated kinase 1 (TAK1) restricts Salmonella Typhimurium growth by inducing AMPK activation and autophagy.
    Liu W; Jiang Y; Sun J; Geng S; Pan Z; Prinz RA; Wang C; Sun J; Jiao X; Xu X
    Cell Death Dis; 2018 May; 9(5):570. PubMed ID: 29752434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles.
    Birmingham CL; Brumell JH
    Autophagy; 2006; 2(3):156-8. PubMed ID: 16874057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling ubiquitinome rearrangements induced by Salmonella infection.
    Bionda T; Behrends C
    Autophagy; 2016 Sep; 12(9):1683-4. PubMed ID: 27467224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation of ATG16L1 function impairs the biogenesis of Salmonella and Coxiella replication vacuoles.
    Lau N; Thomas DR; Lee YW; Knodler LA; Newton HJ
    Mol Microbiol; 2022 Feb; 117(2):235-251. PubMed ID: 34874584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium.
    Huett A; Heath RJ; Begun J; Sassi SO; Baxt LA; Vyas JM; Goldberg MB; Xavier RJ
    Cell Host Microbe; 2012 Dec; 12(6):778-90. PubMed ID: 23245322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy.
    Tumbarello DA; Manna PT; Allen M; Bycroft M; Arden SD; Kendrick-Jones J; Buss F
    PLoS Pathog; 2015 Oct; 11(10):e1005174. PubMed ID: 26451915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Growth and Shrinkage of the Salmonella-Containing Vacuole Determines the Intracellular Pathogen Niche.
    Stévenin V; Chang YY; Le Toquin Y; Duchateau M; Gianetto QG; Luk CH; Salles A; Sohst V; Matondo M; Reiling N; Enninga J
    Cell Rep; 2019 Dec; 29(12):3958-3973.e7. PubMed ID: 31851926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ubiquitin-like modifier FAT10 decorates autophagy-targeted Salmonella and contributes to Salmonella resistance in mice.
    Spinnenhirn V; Farhan H; Basler M; Aichem A; Canaan A; Groettrup M
    J Cell Sci; 2014 Nov; 127(Pt 22):4883-93. PubMed ID: 25271057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane.
    Ruiz-Albert J; Yu XJ; Beuzón CR; Blakey AN; Galyov EE; Holden DW
    Mol Microbiol; 2002 May; 44(3):645-61. PubMed ID: 11994148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NDP52, a novel autophagy receptor for ubiquitin-decorated cytosolic bacteria.
    von Muhlinen N; Thurston T; Ryzhakov G; Bloor S; Randow F
    Autophagy; 2010 Feb; 6(2):288-9. PubMed ID: 20104023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative 3D correlative light and electron microscopy of organelle association during autophagy.
    Takahashi S; Saito C; Koyama-Honda I; Mizushima N
    Cell Struct Funct; 2022 Dec; 47(2):89-99. PubMed ID: 36418108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Knockout Studies of Xenophagic Capturing of Salmonella.
    Scheidel J; Amstein L; Ackermann J; Dikic I; Koch I
    PLoS Comput Biol; 2016 Dec; 12(12):e1005200. PubMed ID: 27906974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The COPII complex and lysosomal VAMP7 determine intracellular Salmonella localization and growth.
    Santos JC; Duchateau M; Fredlund J; Weiner A; Mallet A; Schmitt C; Matondo M; Hourdel V; Chamot-Rooke J; Enninga J
    Cell Microbiol; 2015 Dec; 17(12):1699-720. PubMed ID: 26084942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.