These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32087018)

  • 1. Laryngeal Thermal Injury Model.
    Dion GR; Pingree CS; Rico PJ; Christensen CL
    J Burn Care Res; 2020 May; 41(3):626-632. PubMed ID: 32087018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an in vivo model of laryngeal burn injury.
    Dion GR; Teng S; Bing R; Hiwatashi N; Amin MR; Branski RC
    Laryngoscope; 2017 Jan; 127(1):186-190. PubMed ID: 27305870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laryngeal morphologic changes and epidemiology in patients with inhalation injury: a retrospective study.
    Fang-Gang N; Yang C; Yu-Xuan Q; Yan-Hua R; Wei-Li D; Cheng W; Chun-Quan W; Guo-An Z
    Burns; 2015 Sep; 41(6):1340-6. PubMed ID: 25791918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Morphological and pathological changes of larynx after severe laryngeal burn in dogs and their relationship with laryngostenosis].
    Liu B; Wan JB; Zhang GA
    Zhonghua Shao Shang Za Zhi; 2018 Aug; 34(8):549-555. PubMed ID: 30157560
    [No Abstract]   [Full Text] [Related]  

  • 5. Classification of laryngeal injury in patients with prolonged intubation and to determine the factors that cause the injury.
    Mehel DM; Özdemir D; Çelebi M; Aydemir S; Akgül G; Özgür A
    Am J Otolaryngol; 2020; 41(3):102432. PubMed ID: 32093977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhalational injury and the larynx: A review.
    Reid A; Ha JF
    Burns; 2019 Sep; 45(6):1266-1274. PubMed ID: 30529118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathological changes of the three clinical types of laryngeal burns based on a canine model.
    Cheng W; Ran Z; Wei L; La-na D; Xiao-zhuo Z; Yan-hua R; Fang-gang N; Guo-an Z
    Burns; 2014 Mar; 40(2):257-67. PubMed ID: 23891232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of IgM-Mediated Inflammation Alters Wound Progression in a Swine Model of Partial-Thickness Burn.
    Sadeghipour H; Torabi R; Gottschall J; Lujan-Hernandez J; Sachs DH; Moore FD; Cetrulo CL
    J Burn Care Res; 2017; 38(3):148-160. PubMed ID: 27801682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model.
    Foubert P; Liu M; Anderson S; Rajoria R; Gutierrez D; Zafra D; Tenenhaus M; Fraser JK
    Burns; 2018 Sep; 44(6):1531-1542. PubMed ID: 29958745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pathological changes in different parts of the larynx in canines following laryngeal burns induced by inhalation of hot air at various temperatures].
    Wang C; Zhao R; Zhang GA
    Beijing Da Xue Xue Bao Yi Xue Ban; 2014 Oct; 46(5):771-6. PubMed ID: 25331403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of clinical characteristics of 443 patients with inhalation injury].
    Ning F; Chang Y; Qiu Y; Rong Y; Du W; Cheng W; Wen C; Zhang G
    Zhonghua Shao Shang Za Zhi; 2014 Oct; 30(5):400-4. PubMed ID: 25572889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature distribution in the upper airway after inhalation injury.
    Rong YH; Liu W; Wang C; Ning FG; Zhang GA
    Burns; 2011 Nov; 37(7):1187-91. PubMed ID: 21816541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PWD: Treatment Platform for Both Prolonged Field Care and Definitive Treatment of Burn-Injured Warfighters.
    Nuutila K; Yang L; Broomhead M; Proppe K; Eriksson E
    Mil Med; 2019 May; 184(5-6):e373-e380. PubMed ID: 30252082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An animal model for endotracheal tube-related laryngeal injury using hypoxic ventilation.
    Gordin A; Chadha NK; Campisi P; Luginbuehl I; Taylor G; Forte V
    Otolaryngol Head Neck Surg; 2011 Feb; 144(2):247-51. PubMed ID: 21493425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a combined radiation and full thickness burn injury minipig model to study the effects of uncultured adipose-derived regenerative cell therapy in wound healing.
    Foubert P; Doyle-Eisele M; Gonzalez A; Berard F; Weber W; Zafra D; Alfonso Z; Zhao S; Tenenhaus M; Fraser JK
    Int J Radiat Biol; 2017 Mar; 93(3):340-350. PubMed ID: 27690716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of agreement between gross visual and histological assessment of burn reepithelialization in a porcine burn model.
    Singer AJ; Hirth D; McClain SA; Clark RA
    J Burn Care Res; 2012; 33(2):286-90. PubMed ID: 21983645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piloting a novel porcine model for endolaryngeal injury following prolonged intubation.
    Shah MD; Nguyen LH; Campisi P; James A; Taylor GP; Forte V
    Int J Pediatr Otorhinolaryngol; 2007 Sep; 71(9):1399-406. PubMed ID: 17618695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Ki-67 as a histological index of burn damage in a swine model.
    Farhangkhoee H; Cross KM; Koljonen V; Ghazarian D; Fish JS
    J Burn Care Res; 2012; 33(2):e55-62. PubMed ID: 21979846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncultured adipose-derived regenerative cells (ADRCs) seeded in collagen scaffold improves dermal regeneration, enhancing early vascularization and structural organization following thermal burns.
    Foubert P; Barillas S; Gonzalez AD; Alfonso Z; Zhao S; Hakim I; Meschter C; Tenenhaus M; Fraser JK
    Burns; 2015 Nov; 41(7):1504-16. PubMed ID: 26059048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management of supraglottic stenosis using a novel stent design.
    Moore JE; Capo J; Hu A; Sataloff RT
    J Voice; 2014 Jul; 28(4):515-7. PubMed ID: 24726332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.