These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3208708)

  • 1. Minor effects of bulk viscosity on lipid translational diffusion measured by the excimer formation technique.
    Ollmann M; Robitzki A; Schwarzmann G; Galla HJ
    Eur Biophys J; 1988; 16(2):109-12. PubMed ID: 3208708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrene-labeled gangliosides: micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers.
    Ollmann M; Schwarzmann G; Sandhoff K; Galla HJ
    Biochemistry; 1987 Sep; 26(18):5943-52. PubMed ID: 3676298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure variation of the lateral diffusion in lipid bilayer membranes.
    Müller HJ; Galla HJ
    Biochim Biophys Acta; 1983 Sep; 733(2):291-4. PubMed ID: 6882763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers.
    Somerharju PJ; Virtanen JA; Eklund KK; Vainio P; Kinnunen PK
    Biochemistry; 1985 May; 24(11):2773-81. PubMed ID: 4027225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that pyrene excimer formation in membranes is not diffusion-controlled.
    Blackwell MF; Gounaris K; Barber J
    Biochim Biophys Acta; 1986 Jun; 858(2):221-34. PubMed ID: 3718977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free volume model for lipid lateral diffusion coefficients. Assessment of the temperature dependence in phosphatidylcholine and phosphatidylethanolamine bilayers.
    King MD; Marsh D
    Biochim Biophys Acta; 1986 Nov; 862(1):231-4. PubMed ID: 3768368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. A comparison of experiment with theory.
    Vaz WL; Clegg RM; Hallmann D
    Biochemistry; 1985 Jan; 24(3):781-6. PubMed ID: 3994985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure effects on the apparent viscosity of artificial dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine membranes using intramolecular excimer probe.
    Viriot ML; Guillard R; Kauffmann I; Andre JC; Siest G
    Biochim Biophys Acta; 1983 Aug; 733(1):34-8. PubMed ID: 6688358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excimer-forming lipids in membrane research.
    Galla HJ; Hartmann W
    Chem Phys Lipids; 1980 Oct; 27(3):199-219. PubMed ID: 7418114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropolarities of lipid bilayers and micelles. 5. Localization of pyrene in small unilamellar phosphatidylcholine vesicles.
    L'Heureux GP; Fragata M
    Biophys Chem; 1988 Jul; 30(3):293-301. PubMed ID: 3207848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers.
    Frey S; Tamm LK
    Biochem J; 1990 Dec; 272(3):713-9. PubMed ID: 2176475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the translational diffusion of a normal and a membrane-spanning lipid in L alpha phase 1-palmitoyl-2-oleoylphosphatidylcholine bilayers.
    Vaz WL; Hallmann D; Clegg RM; Gambacorta A; De Rosa M
    Eur Biophys J; 1985; 12(1):19-24. PubMed ID: 3924584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes.
    Barenholz Y; Cohen T; Korenstein R; Ottolenghi M
    Biophys J; 1991 Jul; 60(1):110-24. PubMed ID: 1883931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes.
    Galla HJ; Hartmann W; Theilen U; Sackmann E
    J Membr Biol; 1979 Jul; 48(3):215-36. PubMed ID: 40032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid-phase connectivity and translational diffusion in a eutectic, two-component, two-phase phosphatidylcholine bilayer.
    Bultmann T; Vaz WL; Melo EC; Sisk RB; Thompson TE
    Biochemistry; 1991 Jun; 30(22):5573-9. PubMed ID: 2036427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral diffusion of ganglioside GM1 in phospholipid bilayer membranes.
    Goins B; Masserini M; Barisas BG; Freire E
    Biophys J; 1986 Apr; 49(4):849-56. PubMed ID: 3755064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscosity heterogeneity inside lipid bilayers of single-component phosphatidylcholine liposomes observed with picosecond time-resolved fluorescence spectroscopy.
    Nojima Y; Iwata K
    J Phys Chem B; 2014 Jul; 118(29):8631-41. PubMed ID: 24967901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer.
    Almeida PF; Vaz WL; Thompson TE
    Biochemistry; 1992 Aug; 31(31):7198-210. PubMed ID: 1643051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topology of gel-phase domains and lipid mixing properties in phase-separated two-component phosphatidylcholine bilayers.
    Schram V; Lin HN; Thompson TE
    Biophys J; 1996 Oct; 71(4):1811-22. PubMed ID: 8889158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral mobility of erythrocyte membrane proteins studied by the fluorescence photobleaching recovery technique.
    Chang CH; Takeuchi H; Ito T; Machida K; Ohnishi S
    J Biochem; 1981 Oct; 90(4):997-1004. PubMed ID: 6458603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.