These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32087089)
1. Modulation of the Purine Pathway for Riboflavin Production in Flavinogenic Recombinant Strain of the Yeast Candida famata. Dmytruk KV; Ruchala J; Fedorovych DV; Ostapiv RD; Sibirny AA Biotechnol J; 2020 Jul; 15(7):e1900468. PubMed ID: 32087089 [TBL] [Abstract][Full Text] [Related]
2. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata. Fedorovych DV; Dmytruk KV; Sibirny AA Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of Riboflavin Excretase Enhances Riboflavin Production in the Yeast Candida famata. Tsyrulnyk AO; Fedorovych DV; Dmytruk KV; Sibirny AA Methods Mol Biol; 2021; 2280():31-42. PubMed ID: 33751427 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Dmytruk KV; Yatsyshyn VY; Sybirna NO; Fedorovych DV; Sibirny AA Metab Eng; 2011 Jan; 13(1):82-8. PubMed ID: 21040798 [TBL] [Abstract][Full Text] [Related]
6. Production of flavin mononucleotide by metabolically engineered yeast Candida famata. Yatsyshyn VY; Ishchuk OP; Voronovsky AY; Fedorovych DV; Sibirny AA Metab Eng; 2009 May; 11(3):163-7. PubMed ID: 19558965 [TBL] [Abstract][Full Text] [Related]
7. Expression of yeast homolog of the mammal BCRP gene coding for riboflavin efflux protein activates vitamin B Tsyrulnyk AO; Andreieva YA; Ruchala J; Fayura LR; Dmytruk KV; Fedorovych DV; Sibirny AA Yeast; 2020 Sep; 37(9-10):467-473. PubMed ID: 32401376 [TBL] [Abstract][Full Text] [Related]
8. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. Dmytruk K; Lyzak O; Yatsyshyn V; Kluz M; Sibirny V; Puchalski C; Sibirny A J Biotechnol; 2014 Feb; 172():11-7. PubMed ID: 24361297 [TBL] [Abstract][Full Text] [Related]
9. Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). Andreieva Y; Petrovska Y; Lyzak O; Liu W; Kang Y; Dmytruk K; Sibirny A Yeast; 2020 Sep; 37(9-10):497-504. PubMed ID: 32529692 [TBL] [Abstract][Full Text] [Related]
10. Construction of the advanced flavin mononucleotide producers in the flavinogenic yeast Candida famata. Fedorovych DV; Tsyrulnyk AO; Ruchala J; Sobchuk SM; Dmytruk KV; Fayura LR; Sibirny AA Yeast; 2023 Aug; 40(8):360-366. PubMed ID: 36751139 [TBL] [Abstract][Full Text] [Related]
11. Metabolic and bioprocess engineering of the yeast Candida famata for FAD production. Yatsyshyn VY; Fedorovych DV; Sibirny AA J Ind Microbiol Biotechnol; 2014 May; 41(5):823-35. PubMed ID: 24595668 [TBL] [Abstract][Full Text] [Related]
12. Cloning of structural genes involved in riboflavin synthesis of the yeast Candida famata. Dmytruk KV; Abbas CA; Voronovsky AY; Kshanovska BV; Sybirna KA; Sybirny AA Ukr Biokhim Zh (1999); 2004; 76(1):78-87. PubMed ID: 15909421 [TBL] [Abstract][Full Text] [Related]
13. Cheese whey supports high riboflavin synthesis by the engineered strains of the flavinogenic yeast Candida famata. Ruchala J; Andreieva YA; Tsyrulnyk AO; Sobchuk SM; Najdecka A; Wen L; Kang Y; Dmytruk OV; Dmytruk KV; Fedorovych DV; Sibirny AA Microb Cell Fact; 2022 Aug; 21(1):161. PubMed ID: 35964025 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Jiménez A; Santos MA; Pompejus M; Revuelta JL Appl Environ Microbiol; 2005 Oct; 71(10):5743-51. PubMed ID: 16204483 [TBL] [Abstract][Full Text] [Related]
15. Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis. Voronovsky AY; Abbas CA; Dmytruk KV; Ishchuk OP; Kshanovska BV; Sybirna KA; Gaillardin C; Sibirny AA Yeast; 2004 Nov; 21(15):1307-16. PubMed ID: 15543522 [TBL] [Abstract][Full Text] [Related]
16. Development of a transformation system for the flavinogenic yeast Candida famata. Voronovsky AA; Abbas CA; Fayura LR; Kshanovska BV; Dmytruk KV; Sybirna KA; Sibirny AA FEMS Yeast Res; 2002 Aug; 2(3):381-8. PubMed ID: 12702288 [TBL] [Abstract][Full Text] [Related]
17. Riboflavin overproduction on lignocellulose hydrolysate by the engineered yeast Candida famata. Dzanaeva LS; Wojdyła D; Fedorovych DV; Ruchala J; Dmytruk KV; Sibirny AA FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 39009031 [TBL] [Abstract][Full Text] [Related]
18. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Abbas CA; Sibirny AA Microbiol Mol Biol Rev; 2011 Jun; 75(2):321-60. PubMed ID: 21646432 [TBL] [Abstract][Full Text] [Related]
19. Heterologous Expression and Characterization of Flavinadenine Dinucleotide Synthetase from Zhou G; Pan Q; Hu Z; Qiu J; Yu Z Protein Pept Lett; 2021; 28(2):229-239. PubMed ID: 32640951 [TBL] [Abstract][Full Text] [Related]
20. [Construction of the flavinogenic yeast Candida famata strains with high riboflavin kinase activity using gene engineering]. Ishchuk OP; Iatsyshyn VIu; Dmytruk KV; Voronovs'kyĭ AIa; Fedorovych DV; Sybirnyĭ AA Ukr Biokhim Zh (1999); 2006; 78(5):63-9. PubMed ID: 17290783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]