BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32087089)

  • 21. Metabolic engineering of Ashbya gossypii for enhanced FAD production through promoter replacement of FMN1 gene.
    Patel MV; T S C
    Enzyme Microb Technol; 2020 Feb; 133():109455. PubMed ID: 31874696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.
    Stahmann KP; Revuelta JL; Seulberger H
    Appl Microbiol Biotechnol; 2000 May; 53(5):509-16. PubMed ID: 10855708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Escherichia coli for the production of riboflavin.
    Lin Z; Xu Z; Li Y; Wang Z; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():104. PubMed ID: 25027702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differentiation of Debaryomyces hansenii and Candida famata by rRNA gene intergenic spacer fingerprinting and reassessment of phylogenetic relationships among D. hansenii, C. famata, D. fabryi, C. flareri (=D. subglobosus) and D. prosopidis: description of D. vietnamensis sp. nov. closely related to D. nepalensis.
    Nguyen HV; Gaillardin C; Neuvéglise C
    FEMS Yeast Res; 2009 Jun; 9(4):641-62. PubMed ID: 19385997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis.
    Shi T; Wang Y; Wang Z; Wang G; Liu D; Fu J; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():101. PubMed ID: 25023436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization.
    Ledesma-Amaro R; Serrano-Amatriain C; Jiménez A; Revuelta JL
    Microb Cell Fact; 2015 Oct; 14():163. PubMed ID: 26463172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of new dominant selectable markers for the nonconventional yeasts Ogataea polymorpha and Candida famata.
    Bratiichuk D; Kurylenko O; Vasylyshyn R; Zuo M; Kang Y; Dmytruk K; Sibirny A
    Yeast; 2020 Sep; 37(9-10):505-513. PubMed ID: 32307750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient production of bacterial antibiotics aminoriboflavin and roseoflavin in eukaryotic microorganisms, yeasts.
    Dmytruk KV; Ruchala J; Fayura LR; Chrzanowski G; Dmytruk OV; Tsyrulnyk AO; Andreieva YA; Fedorovych DV; Motyka OI; Mattanovich D; Marx H; Sibirny AA
    Microb Cell Fact; 2023 Jul; 22(1):132. PubMed ID: 37474952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on the biosynthesis of riboflavin. 7. The incorporation of adenine and guanine into riboflavin and into nucleic acid purines in Eremothecium ashbyii and Candida flareri.
    AUDLEY BG; GOODWIN TW
    Biochem J; 1962 Sep; 84(3):587-92. PubMed ID: 13863203
    [No Abstract]   [Full Text] [Related]  

  • 30. Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis.
    Boretsky YR; Pynyaha YV; Boretsky VY; Fedorovych DV; Fayura LR; Protchenko O; Philpott CC; Sibirny AA
    FEMS Yeast Res; 2011 May; 11(3):307-14. PubMed ID: 21261808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo engineering riboflavin production Bacillus subtilis by overexpressing the downstream genes in the purine biosynthesis pathway.
    Liu C; Xia M; Fang H; Xu F; Wang S; Zhang D
    Microb Cell Fact; 2024 May; 23(1):159. PubMed ID: 38822377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal
    Solopova A; Bottacini F; Venturi Degli Esposti E; Amaretti A; Raimondi S; Rossi M; van Sinderen D
    Front Microbiol; 2020; 11():573335. PubMed ID: 33042083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis.
    Kato T; Azegami J; Yokomori A; Dohra H; El Enshasy HA; Park EY
    BMC Genomics; 2020 Apr; 21(1):319. PubMed ID: 32326906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria.
    Chen J; Vestergaard M; Jensen TG; Shen J; Dufva M; Solem C; Jensen PR
    mBio; 2017 May; 8(3):. PubMed ID: 28559484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Purine metabolism and riboflavin formation in microorganisms. II. Purine metabolism and riboflavin synthesis of a purine deficiency mutant of Candida guilliermondii (Cast.) Lang. et G].
    zur Nieden K; Fritsche W; Schlee D; Reinbothe H
    Acta Biol Med Ger; 1969; 23(2):235-43. PubMed ID: 5369708
    [No Abstract]   [Full Text] [Related]  

  • 37. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview.
    Averianova LA; Balabanova LA; Son OM; Podvolotskaya AB; Tekutyeva LA
    Front Bioeng Biotechnol; 2020; 8():570828. PubMed ID: 33304888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purine biosynthesis, riboflavin production, and trophic-phase span are controlled by a Myb-related transcription factor in the fungus Ashbya gossypii.
    Mateos L; Jiménez A; Revuelta JL; Santos MA
    Appl Environ Microbiol; 2006 Jul; 72(7):5052-60. PubMed ID: 16820505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disorders of riboflavin metabolism.
    Balasubramaniam S; Christodoulou J; Rahman S
    J Inherit Metab Dis; 2019 Jul; 42(4):608-619. PubMed ID: 30680745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.