These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32087202)
1. The Molecular Mechanism of Polymer Formation of Farnesylated Human Guanylate-binding Protein 1. Sistemich L; Kutsch M; Hämisch B; Zhang P; Shydlovskyi S; Britzen-Laurent N; Stürzl M; Huber K; Herrmann C J Mol Biol; 2020 Mar; 432(7):2164-2185. PubMed ID: 32087202 [TBL] [Abstract][Full Text] [Related]
2. Structural requirements for membrane binding of human guanylate-binding protein 1. Sistemich L; Dimitrov Stanchev L; Kutsch M; Roux A; Günther Pomorski T; Herrmann C FEBS J; 2021 Jul; 288(13):4098-4114. PubMed ID: 33405388 [TBL] [Abstract][Full Text] [Related]
3. Purification of Farnesylated hGBP1 and Characterization of Its Polymerization and Membrane Binding. Sistemich L; Herrmann C Methods Mol Biol; 2020; 2159():67-81. PubMed ID: 32529364 [TBL] [Abstract][Full Text] [Related]
4. Farnesylation of human guanylate-binding protein 1 as safety mechanism preventing structural rearrangements and uninduced dimerization. Lorenz C; Ince S; Zhang T; Cousin A; Batra-Safferling R; Nagel-Steger L; Herrmann C; Stadler AM FEBS J; 2020 Feb; 287(3):496-514. PubMed ID: 31330084 [TBL] [Abstract][Full Text] [Related]
5. Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1. Shydlovskyi S; Zienert AY; Ince S; Dovengerds C; Hohendahl A; Dargazanli JM; Blum A; Günther SD; Kladt N; Stürzl M; Schauss AC; Kutsch M; Roux A; Praefcke GJK; Herrmann C Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5559-E5568. PubMed ID: 28645896 [TBL] [Abstract][Full Text] [Related]
6. Tetramerization of human guanylate-binding protein 1 is mediated by coiled-coil formation of the C-terminal α-helices. Syguda A; Bauer M; Benscheid U; Ostler N; Naschberger E; Ince S; Stürzl M; Herrmann C FEBS J; 2012 Jul; 279(14):2544-54. PubMed ID: 22607347 [TBL] [Abstract][Full Text] [Related]
7. The guanine cap of human guanylate-binding protein 1 is responsible for dimerization and self-activation of GTP hydrolysis. Wehner M; Kunzelmann S; Herrmann C FEBS J; 2012 Jan; 279(2):203-10. PubMed ID: 22059445 [TBL] [Abstract][Full Text] [Related]
8. Nucleotide dependent cysteine reactivity of hGBP1 uncovers a domain movement during GTP hydrolysis. Vöpel T; Kunzelmann S; Herrmann C FEBS Lett; 2009 Jun; 583(12):1923-7. PubMed ID: 19463820 [TBL] [Abstract][Full Text] [Related]
9. Large-scale, dynamin-like motions of the human guanylate binding protein 1 revealed by multi-resolution simulations. Barz B; Loschwitz J; Strodel B PLoS Comput Biol; 2019 Oct; 15(10):e1007193. PubMed ID: 31589600 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of biotinylated hGBP1 in a defined orientation on surfaces is crucial for uniform interaction with analyte proteins and catalytic activity. Syguda A; Kerstan A; Ladnorg T; Stüben F; Wöll C; Herrmann C Langmuir; 2012 Apr; 28(15):6411-8. PubMed ID: 22458356 [TBL] [Abstract][Full Text] [Related]
11. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis. Praefcke GJ; Kloep S; Benscheid U; Lilie H; Prakash B; Herrmann C J Mol Biol; 2004 Nov; 344(1):257-69. PubMed ID: 15504415 [TBL] [Abstract][Full Text] [Related]
12. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1. Rani A; Pandita E; Rahman S; Deep S; Sau AK PLoS One; 2012; 7(7):e40487. PubMed ID: 22859948 [TBL] [Abstract][Full Text] [Related]
13. Nucleotide binding and self-stimulated GTPase activity of human guanylate-binding protein 1 (hGBP1). Kunzelmann S; Praefcke GJ; Herrmann C Methods Enzymol; 2005; 404():512-27. PubMed ID: 16413296 [TBL] [Abstract][Full Text] [Related]
14. Transient kinetic investigation of GTP hydrolysis catalyzed by interferon-gamma-induced hGBP1 (human guanylate binding protein 1). Kunzelmann S; Praefcke GJ; Herrmann C J Biol Chem; 2006 Sep; 281(39):28627-35. PubMed ID: 16873363 [TBL] [Abstract][Full Text] [Related]
15. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497 [TBL] [Abstract][Full Text] [Related]
16. Integrative dynamic structural biology unveils conformers essential for the oligomerization of a large GTPase. Peulen TO; Hengstenberg CS; Biehl R; Dimura M; Lorenz C; Valeri A; Folz J; Hanke CA; Ince S; Vöpel T; Farago B; Gohlke H; Klare JP; Stadler AM; Seidel CAM; Herrmann C Elife; 2023 Jun; 12():. PubMed ID: 37314846 [TBL] [Abstract][Full Text] [Related]
17. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif. Praefcke GJ; Geyer M; Schwemmle M; Robert Kalbitzer H; Herrmann C J Mol Biol; 1999 Sep; 292(2):321-32. PubMed ID: 10493878 [TBL] [Abstract][Full Text] [Related]
18. Triphosphate induced dimerization of human guanylate binding protein 1 involves association of the C-terminal helices: a joint double electron-electron resonance and FRET study. Vöpel T; Hengstenberg CS; Peulen TO; Ajaj Y; Seidel CA; Herrmann C; Klare JP Biochemistry; 2014 Jul; 53(28):4590-600. PubMed ID: 24991938 [TBL] [Abstract][Full Text] [Related]