These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32087265)
1. Antisolvent precipitation of lipid nanoparticles in microfluidic systems - A comparative study. Riewe J; Erfle P; Melzig S; Kwade A; Dietzel A; Bunjes H Int J Pharm; 2020 Apr; 579():119167. PubMed ID: 32087265 [TBL] [Abstract][Full Text] [Related]
2. Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles. Erfle P; Riewe J; Bunjes H; Dietzel A Lab Chip; 2021 Jun; 21(11):2178-2193. PubMed ID: 33861294 [TBL] [Abstract][Full Text] [Related]
3. Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification. Joseph S; Bunjes H J Pharm Sci; 2012 Jul; 101(7):2479-89. PubMed ID: 22527807 [TBL] [Abstract][Full Text] [Related]
4. Control over Particle Size Distribution by Autoclaving Poloxamer-Stabilized Trimyristin Nanodispersions. Göke K; Roese E; Arnold A; Kuntsche J; Bunjes H Mol Pharm; 2016 Sep; 13(9):3187-95. PubMed ID: 27463039 [TBL] [Abstract][Full Text] [Related]
5. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Zhigaltsev IV; Belliveau N; Hafez I; Leung AK; Huft J; Hansen C; Cullis PR Langmuir; 2012 Feb; 28(7):3633-40. PubMed ID: 22268499 [TBL] [Abstract][Full Text] [Related]
6. A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the o/w microemulsion quenching technique. Mojahedian MM; Daneshamouz S; Samani SM; Zargaran A Chem Phys Lipids; 2013 Sep; 174():32-8. PubMed ID: 23743405 [TBL] [Abstract][Full Text] [Related]
8. Lipid nanoparticles: drug localization is substance-specific and achievable load depends on the size and physical state of the particles. Kupetz E; Bunjes H J Control Release; 2014 Sep; 189():54-64. PubMed ID: 24933601 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039 [TBL] [Abstract][Full Text] [Related]
10. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. Đorđević SM; Cekić ND; Savić MM; Isailović TM; Ranđelović DV; Marković BD; Savić SR; Timić Stamenić T; Daniels R; Savić SD Int J Pharm; 2015 Sep; 493(1-2):40-54. PubMed ID: 26209070 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Shirasu Porous Glass (SPG) membrane emulsification for the preparation of colloidal lipid drug carrier dispersions. Joseph S; Bunjes H Eur J Pharm Biopharm; 2014 May; 87(1):178-86. PubMed ID: 24333666 [TBL] [Abstract][Full Text] [Related]
12. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. Morral-Ruíz G; Melgar-Lesmes P; García ML; Solans C; García-Celma MJ Int J Pharm; 2014 Jan; 461(1-2):1-13. PubMed ID: 24275445 [TBL] [Abstract][Full Text] [Related]
13. Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. Martins S; Tho I; Souto E; Ferreira D; Brandl M Eur J Pharm Sci; 2012 Apr; 45(5):613-23. PubMed ID: 22245538 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive and comparative studies on nanocytotoxicity of glyceryl monooleate- and phytantriol-based lipid liquid crystalline nanoparticles. Jagielski J; Przysiecka Ł; Flak D; Diak M; Pietralik-Molińska Z; Kozak M; Jurga S; Nowaczyk G J Nanobiotechnology; 2021 Jun; 19(1):168. PubMed ID: 34082768 [TBL] [Abstract][Full Text] [Related]
15. Does the commonly used pH-stat method with back titration really quantify the enzymatic digestibility of lipid drug delivery systems? A case study on solid lipid nanoparticles (SLN). Heider M; Hause G; Mäder K Eur J Pharm Biopharm; 2016 Dec; 109():194-205. PubMed ID: 27789354 [TBL] [Abstract][Full Text] [Related]
17. Drug-Lipid-Surfactant Miscibility for the Development of Solid Lipid Nanoparticles. Trivino A; Gumireddy A; Chauhan H AAPS PharmSciTech; 2019 Jan; 20(2):46. PubMed ID: 30617602 [TBL] [Abstract][Full Text] [Related]
18. Preparation of solid lipid nanoparticles from W/O/W emulsions: preliminary studies on insulin encapsulation. Gallarate M; Trotta M; Battaglia L; Chirio D J Microencapsul; 2009 Aug; 26(5):394-402. PubMed ID: 18785076 [TBL] [Abstract][Full Text] [Related]
19. Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles. Erfle P; Riewe J; Cai S; Bunjes H; Dietzel A Lab Chip; 2022 Aug; 22(16):3025-3044. PubMed ID: 35829631 [TBL] [Abstract][Full Text] [Related]
20. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles. Chiesa E; Dorati R; Modena T; Conti B; Genta I Int J Pharm; 2018 Jan; 536(1):165-177. PubMed ID: 29175645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]