BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 32087280)

  • 1. Recovery of muscle mass and muscle oxidative phenotype following disuse does not require GSK-3 inactivation.
    Theeuwes WF; Pansters NAM; Gosker HR; Schols AMWJ; Verhees KJP; de Theije CC; van Gorp RHP; Kelders MCJM; Ronda O; Haegens A; Remels AHV; Langen RCJ
    Biochim Biophys Acta Mol Basis Dis; 2020 Jun; 1866(6):165740. PubMed ID: 32087280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downregulation of PGC-1α during cisplatin-induced muscle atrophy in murine skeletal muscle.
    Sato K; Satoshi Y; Miyauchi Y; Sato F; Kon R; Ikarashi N; Chiba Y; Hosoe T; Sakai H
    Biochim Biophys Acta Mol Basis Dis; 2024 Jan; 1870(1):166877. PubMed ID: 37673360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal alterations in protein signaling cascades during recovery from muscle atrophy.
    Childs TE; Spangenburg EE; Vyas DR; Booth FW
    Am J Physiol Cell Physiol; 2003 Aug; 285(2):C391-8. PubMed ID: 12711594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosome biogenesis and degradation regulate translational capacity during muscle disuse and reloading.
    Figueiredo VC; D'Souza RF; Van Pelt DW; Lawrence MM; Zeng N; Markworth JF; Poppitt SD; Miller BF; Mitchell CJ; McCarthy JJ; Dupont-Versteegden EE; Cameron-Smith D
    J Cachexia Sarcopenia Muscle; 2021 Feb; 12(1):130-143. PubMed ID: 33231914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global deletion of CCL2 has adverse impacts on recovery of skeletal muscle fiber size and function and is muscle specific.
    Ferrara PJ; Reidy PT; Petrocelli JJ; Yee EM; Fix DK; Mahmassani ZS; Montgomery JA; McKenzie AI; de Hart NMMP; Drummond MJ
    J Appl Physiol (1985); 2023 Apr; 134(4):923-932. PubMed ID: 36861669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal Muscle Electrical Stimulation Prevents Progression of Disuse Muscle Atrophy via Forkhead Box O Dynamics Mediated by Phosphorylated Protein Kinase B and Peroxisome Proliferator-Activated Receptor gamma Coactivator-1alpha.
    Takahashi A; Honda Y; Tanaka N; Miyake J; Maeda S; Kataoka H; Sakamoto J; Okita M
    Physiol Res; 2024 Mar; 73(1):105-115. PubMed ID: 38466009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum extracellular vesicle miR-203a-3p content is associated with skeletal muscle mass and protein turnover during disuse atrophy and regrowth.
    Van Pelt DW; Vechetti IJ; Lawrence MM; Van Pelt KL; Patel P; Miller BF; Butterfield TA; Dupont-Versteegden EE
    Am J Physiol Cell Physiol; 2020 Aug; 319(2):C419-C431. PubMed ID: 32639875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle from aged rats is resistant to mechanotherapy during atrophy and reloading.
    Lawrence MM; Van Pelt DW; Confides AL; Hettinger ZR; Hunt ER; Reid JJ; Laurin JL; Peelor FF; Butterfield TA; Miller BF; Dupont-Versteegden EE
    Geroscience; 2021 Feb; 43(1):65-83. PubMed ID: 32588343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired proteostatic mechanisms other than decreased protein synthesis limit old skeletal muscle recovery after disuse atrophy.
    Fuqua JD; Lawrence MM; Hettinger ZR; Borowik AK; Brecheen PL; Szczygiel MM; Abbott CB; Peelor FF; Confides AL; Kinter M; Bodine SC; Dupont-Versteegden EE; Miller BF
    J Cachexia Sarcopenia Muscle; 2023 Oct; 14(5):2076-2089. PubMed ID: 37448295
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    You CL; Lee SJ; Lee J; Vuong TA; Lee HY; Jeong SY; Alishir A; Walker AS; Bae GU; Kim KH; Kang JS
    Int J Biol Sci; 2023; 19(15):4898-4914. PubMed ID: 37781506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denervation-induced muscle atrophy suppression in renalase-deficient mice via increased protein synthesis.
    Tokinoya K; Shirai T; Ota Y; Takemasa T; Takekoshi K
    Physiol Rep; 2020 Aug; 8(15):e14475. PubMed ID: 32741114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of deficits in aged skeletal muscle during disuse and recovery in response to treatment with a secrotome product derived from partially differentiated human pluripotent stem cells.
    Fix DK; Mahmassani ZS; Petrocelli JJ; de Hart NMMP; Ferrara PJ; Painter JS; Nistor G; Lane TE; Keirstead HS; Drummond MJ
    Geroscience; 2021 Dec; 43(6):2635-2652. PubMed ID: 34427856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amelioration of cisplatin-induced neurodegenerative changes in rats and restoration of mitochondrial biogenesis by 6-bromoindirubin-3'-oxime: The implication of the GSK-3β/PGC1-α axis.
    Magdy O; Eshra M; Rashed L; Maher M; Hosny SA; ShamsEldeen AM
    Tissue Cell; 2024 Jun; 88():102393. PubMed ID: 38705086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZHX2 emerges as a negative regulator of mitochondrial oxidative phosphorylation during acute liver injury.
    Zhang Y; Fan Y; Hu H; Zhang X; Wang Z; Wu Z; Wang L; Yu X; Song X; Xiang P; Zhang X; Wang T; Tan S; Li C; Gao L; Liang X; Li S; Li N; Yue X; Ma C
    Nat Commun; 2023 Nov; 14(1):7527. PubMed ID: 37980429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asperosaponin VI facilitates the regeneration of skeletal muscle injury by suppressing GSK-3β-mediated cell apoptosis.
    Yang X; Liang J; Shu Y; Wei L; Wen C; Luo H; Ma L; Qin T; Wang B; Zeng S; Liu Y; Zhou C
    J Cell Biochem; 2024 Jan; 125(1):115-126. PubMed ID: 38079224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mustn1 is a smooth muscle cell-secreted microprotein that modulates skeletal muscle extracellular matrix composition.
    Ducommun S; Jannig PR; Cervenka I; Murgia M; Mittenbühler MJ; Chernogubova E; Dias JM; Jude B; Correia JC; Van Vranken JG; Ocana-Santero G; Porsmyr-Palmertz M; McCann Haworth S; Martínez-Redondo V; Liu Z; Carlström M; Mann M; Lanner JT; Teixeira AI; Maegdefessel L; Spiegelman BM; Ruas JL
    Mol Metab; 2024 Apr; 82():101912. PubMed ID: 38458566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Six-day dry immersion leads to downregulation of slow-fiber type and mitochondria-related genes expression.
    Sharlo KA; Vilchinskaya NA; Tyganov SA; Turtikova OV; Lvova ID; Sergeeva KV; Rukavishnikov IV; Shenkman BS; Tomilovskaya ES; Orlov OI
    Am J Physiol Endocrinol Metab; 2023 Dec; 325(6):E734-E743. PubMed ID: 37938180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology.
    Jaiswal N; Gavin M; Loro E; Sostre-Colón J; Roberson PA; Uehara K; Rivera-Fuentes N; Neinast M; Arany Z; Kimball SR; Khurana TS; Titchenell PM
    J Cachexia Sarcopenia Muscle; 2022 Feb; 13(1):495-514. PubMed ID: 34751006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse.
    Memme JM; Slavin M; Moradi N; Hood DA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions.
    Mirzoev TM; Sharlo KA; Shenkman BS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.