These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 32087659)

  • 1. On the role of solvent in hydrophobic cavity-ligand recognition kinetics.
    Ahalawat N; Bandyopadhyay S; Mondal J
    J Chem Phys; 2020 Feb; 152(7):074104. PubMed ID: 32087659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent's Role in Cavity-Ligand Recognition Would Depend on the Mode of Ligand Diffusion.
    Bandyopadhyay S; Majumdar BB; Mondal J
    J Phys Chem B; 2022 Apr; 126(16):2952-2958. PubMed ID: 35436126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
    Mondal J; Ahalawat N; Pandit S; Kay LE; Vallurupalli P
    PLoS Comput Biol; 2018 May; 14(5):e1006180. PubMed ID: 29775455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How hydrophobic drying forces impact the kinetics of molecular recognition.
    Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13277-82. PubMed ID: 23901110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent fluctuations in hydrophobic cavity-ligand binding kinetics.
    Setny P; Baron R; Michael Kekenes-Huskey P; McCammon JA; Dzubiella J
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1197-202. PubMed ID: 23297241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enthalpically-driven ligand recognition and cavity solvation of bovine odorant binding protein.
    Gómez-Velasco H; Rojo-Domínguez A; García-Hernández E
    Biophys Chem; 2020 Feb; 257():106315. PubMed ID: 31841862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations.
    Zhou S; Sun H; Cheng LT; Dzubiella J; Li B; McCammon JA
    J Chem Phys; 2016 Aug; 145(5):054114. PubMed ID: 27497546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water structure, dynamics, and spectral signatures: changes upon model cavity-ligand recognition.
    Baron R; Setny P; Paesani F
    J Phys Chem B; 2012 Nov; 116(46):13774-80. PubMed ID: 23102165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles for Tuning Hydrophobic Ligand-Receptor Binding Kinetics.
    Weiß RG; Setny P; Dzubiella J
    J Chem Theory Comput; 2017 Jun; 13(6):3012-3019. PubMed ID: 28494155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding.
    Daidone I; Ulmschneider MB; Di Nola A; Amadei A; Smith JC
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15230-5. PubMed ID: 17881585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Order of Water Molecules around Hydrophobic Solutes: Length-Scale Dependence and Solute-Solvent Coupling.
    Hande VR; Chakrabarty S
    J Phys Chem B; 2015 Aug; 119(34):11346-57. PubMed ID: 26039676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-Driven Cavity-Ligand Binding: Comparison of Thermodynamic Signatures from Coarse-Grained and Atomic-Level Simulations.
    Baron R; Molinero V
    J Chem Theory Comput; 2012 Oct; 8(10):3696-704. PubMed ID: 26593014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways to dewetting in hydrophobic confinement.
    Remsing RC; Xi E; Vembanur S; Sharma S; Debenedetti PG; Garde S; Patel AJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8181-6. PubMed ID: 26100866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water properties and potential of mean force for hydrophobic interactions of methane and nanoscopic pockets studied by computer simulations.
    Setny P
    J Chem Phys; 2007 Aug; 127(5):054505. PubMed ID: 17688347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation.
    Eisenhaber F; Argos P
    Protein Eng; 1996 Dec; 9(12):1121-33. PubMed ID: 9010925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model.
    Vorobjev YN; Hermans J
    Biophys Chem; 1999 Apr; 78(1-2):195-205. PubMed ID: 10343388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Desolvation in Thermodynamics and Kinetics of Ligand Binding to a Kinase.
    Mondal J; Friesner RA; Berne BJ
    J Chem Theory Comput; 2014 Dec; 10(12):5696-5705. PubMed ID: 25516727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent Fluctuations Induce Non-Markovian Kinetics in Hydrophobic Pocket-Ligand Binding.
    Weiß RG; Setny P; Dzubiella J
    J Phys Chem B; 2016 Aug; 120(33):8127-36. PubMed ID: 27009557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.