These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32087727)

  • 1. neoANT-HILL: an integrated tool for identification of potential neoantigens.
    Coelho ACMF; Fonseca AL; Martins DL; Lins PBR; da Cunha LM; de Souza SJ
    BMC Med Genomics; 2020 Feb; 13(1):30. PubMed ID: 32087727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pTuneos: prioritizing tumor neoantigens from next-generation sequencing data.
    Zhou C; Wei Z; Zhang Z; Zhang B; Zhu C; Chen K; Chuai G; Qu S; Xie L; Gao Y; Liu Q
    Genome Med; 2019 Oct; 11(1):67. PubMed ID: 31666118
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Zhang Z; Zhou C; Tang L; Gong Y; Wei Z; Zhang G; Wang F; Liu Q; Yu J
    Aging (Albany NY); 2020 Jul; 12(14):14633-14648. PubMed ID: 32697765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis.
    Wu J; Zhao W; Zhou B; Su Z; Gu X; Zhou Z; Chen S
    Genomics Proteomics Bioinformatics; 2018 Aug; 16(4):276-282. PubMed ID: 30223042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive profiling of cancer neoantigens from aberrant RNA splicing.
    Wickland DP; McNinch C; Jessen E; Necela B; Shreeder B; Lin Y; Knutson KL; Asmann YW
    J Immunother Cancer; 2024 May; 12(5):. PubMed ID: 38754917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing.
    Karasaki T; Nagayama K; Kuwano H; Nitadori JI; Sato M; Anraku M; Hosoi A; Matsushita H; Takazawa M; Ohara O; Nakajima J; Kakimi K
    Cancer Sci; 2017 Feb; 108(2):170-177. PubMed ID: 27960040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ScanNeo: identifying indel-derived neoantigens using RNA-Seq data.
    Wang TY; Wang L; Alam SK; Hoeppner LH; Yang R
    Bioinformatics; 2019 Oct; 35(20):4159-4161. PubMed ID: 30887025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens.
    Hundal J; Carreno BM; Petti AA; Linette GP; Griffith OL; Mardis ER; Griffith M
    Genome Med; 2016 Jan; 8(1):11. PubMed ID: 26825632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TSNAD: an integrated software for cancer somatic mutation and tumour-specific neoantigen detection.
    Zhou Z; Lyu X; Wu J; Yang X; Wu S; Zhou J; Gu X; Su Z; Chen S
    R Soc Open Sci; 2017 Apr; 4(4):170050. PubMed ID: 28484631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline.
    Schenck RO; Lakatos E; Gatenbee C; Graham TA; Anderson ARA
    BMC Bioinformatics; 2019 May; 20(1):264. PubMed ID: 31117948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ScanNeo2: a comprehensive workflow for neoantigen detection and immunogenicity prediction from diverse genomic and transcriptomic alterations.
    Schäfer RA; Guo Q; Yang R
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37882750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Survey of Genomic Alterations in Gastric Cancer Reveals Recurrent Neoantigens as Potential Therapeutic Targets.
    Chen C; Zhou Q; Wu R; Li B; Chen Q; Zhang X; Shi C
    Biomed Res Int; 2019; 2019():2183510. PubMed ID: 31781598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population-level distribution and putative immunogenicity of cancer neoepitopes.
    Wood MA; Paralkar M; Paralkar MP; Nguyen A; Struck AJ; Ellrott K; Margolin A; Nellore A; Thompson RF
    BMC Cancer; 2018 Apr; 18(1):414. PubMed ID: 29653567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens.
    Bais P; Namburi S; Gatti DM; Zhang X; Chuang JH
    Bioinformatics; 2017 Oct; 33(19):3110-3112. PubMed ID: 28605406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated protocol for exitron and exitron-derived neoantigen identification using human RNA-seq data with ScanExitron and ScanNeo.
    Wang TY; Yang R
    STAR Protoc; 2021 Sep; 2(3):100788. PubMed ID: 34522901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification.
    Tang Y; Wang Y; Wang J; Li M; Peng L; Wei G; Zhang Y; Li J; Gao Z
    BMC Bioinformatics; 2020 Nov; 21(1):532. PubMed ID: 33208106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity.
    Wu J; Li J; Chen S; Zhou Z
    Methods Mol Biol; 2024; 2809():237-244. PubMed ID: 38907901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MONET: a database for prediction of neoantigens derived from microsatellite loci.
    Deng N; Sinha KM; Vilar E
    Front Immunol; 2024; 15():1394593. PubMed ID: 38835776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Untranslated regions (UTRs) are a potential novel source of neoantigens for personalised immunotherapy.
    Sng CCT; Kallor AA; Simpson BS; Bedran G; Alfaro J; Litchfield K
    Front Immunol; 2024; 15():1347542. PubMed ID: 38558815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information.
    Kim S; Kim HS; Kim E; Lee MG; Shin EC; Paik S; Kim S
    Ann Oncol; 2018 Apr; 29(4):1030-1036. PubMed ID: 29360924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.