These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 32088326)
1. Endocytosis, trafficking and exocytosis of intact full-length botulinum neurotoxin type a in cultured rat neurons. Solabre Valois L; Wilkinson KA; Nakamura Y; Henley JM Neurotoxicology; 2020 May; 78():80-87. PubMed ID: 32088326 [TBL] [Abstract][Full Text] [Related]
2. Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. Vazquez-Cintron EJ; Vakulenko M; Band PA; Stanker LH; Johnson EA; Ichtchenko K PLoS One; 2014; 9(1):e85517. PubMed ID: 24465585 [TBL] [Abstract][Full Text] [Related]
3. Uptake of botulinum neurotoxin into cultured neurons. Keller JE; Cai F; Neale EA Biochemistry; 2004 Jan; 43(2):526-32. PubMed ID: 14717608 [TBL] [Abstract][Full Text] [Related]
4. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. Restani L; Giribaldi F; Manich M; Bercsenyi K; Menendez G; Rossetto O; Caleo M; Schiavo G PLoS Pathog; 2012 Dec; 8(12):e1003087. PubMed ID: 23300443 [TBL] [Abstract][Full Text] [Related]
5. Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. Harper CB; Martin S; Nguyen TH; Daniels SJ; Lavidis NA; Popoff MR; Hadzic G; Mariana A; Chau N; McCluskey A; Robinson PJ; Meunier FA J Biol Chem; 2011 Oct; 286(41):35966-35976. PubMed ID: 21832053 [TBL] [Abstract][Full Text] [Related]
6. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a. Wang T; Martin S; Papadopulos A; Harper CB; Mavlyutov TA; Niranjan D; Glass NR; Cooper-White JJ; Sibarita JB; Choquet D; Davletov B; Meunier FA J Neurosci; 2015 Apr; 35(15):6179-94. PubMed ID: 25878289 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy. Yin L; Masuyer G; Zhang S; Zhang J; Miyashita SI; Burgin D; Lovelock L; Coker SF; Fu TM; Stenmark P; Dong M PLoS Biol; 2020 Mar; 18(3):e3000618. PubMed ID: 32182233 [TBL] [Abstract][Full Text] [Related]
8. Longer-acting and highly potent chimaeric inhibitors of excessive exocytosis created with domains from botulinum neurotoxin A and B. Wang J; Zurawski TH; Bodeker MO; Meng J; Boddul S; Aoki KR; Dolly JO Biochem J; 2012 May; 444(1):59-67. PubMed ID: 22360156 [TBL] [Abstract][Full Text] [Related]
9. A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. Wang J; Zurawski TH; Meng J; Lawrence G; Olango WM; Finn DP; Wheeler L; Dolly JO J Biol Chem; 2011 Feb; 286(8):6375-85. PubMed ID: 21138836 [TBL] [Abstract][Full Text] [Related]
10. The C-terminal heavy-chain domain of botulinum neurotoxin a is not the only site that binds neurons, as the N-terminal heavy-chain domain also plays a very active role in toxin-cell binding and interactions. Ayyar BV; Aoki KR; Atassi MZ Infect Immun; 2015 Apr; 83(4):1465-76. PubMed ID: 25624352 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. Foran PG; Mohammed N; Lisk GO; Nagwaney S; Lawrence GW; Johnson E; Smith L; Aoki KR; Dolly JO J Biol Chem; 2003 Jan; 278(2):1363-71. PubMed ID: 12381720 [TBL] [Abstract][Full Text] [Related]
12. An efficient drug delivery vehicle for botulism countermeasure. Zhang P; Ray R; Singh BR; Li D; Adler M; Ray P BMC Pharmacol; 2009 Oct; 9():12. PubMed ID: 19860869 [TBL] [Abstract][Full Text] [Related]
13. Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Rummel A Curr Top Microbiol Immunol; 2013; 364():61-90. PubMed ID: 23239349 [TBL] [Abstract][Full Text] [Related]
14. SV2 is the protein receptor for botulinum neurotoxin A. Dong M; Yeh F; Tepp WH; Dean C; Johnson EA; Janz R; Chapman ER Science; 2006 Apr; 312(5773):592-6. PubMed ID: 16543415 [TBL] [Abstract][Full Text] [Related]
15. Botulinum neurotoxin type B uses a distinct entry pathway mediated by CDC42 into intestinal cells versus neuronal cells. Connan C; Voillequin M; Chavez CV; Mazuet C; Leveque C; Vitry S; Vandewalle A; Popoff MR Cell Microbiol; 2017 Aug; 19(8):. PubMed ID: 28296078 [TBL] [Abstract][Full Text] [Related]
16. Botulinum Neurotoxin Chimeras Suppress Stimulation by Capsaicin of Rat Trigeminal Sensory Neurons In Vivo and In Vitro. Antoniazzi C; Belinskaia M; Zurawski T; Kaza SK; Dolly JO; Lawrence GW Toxins (Basel); 2022 Feb; 14(2):. PubMed ID: 35202143 [TBL] [Abstract][Full Text] [Related]
17. Enhancing toxin-based vaccines against botulism. Przedpelski A; Tepp WH; Zuverink M; Johnson EA; Pellet S; Barbieri JT Vaccine; 2018 Feb; 36(6):827-832. PubMed ID: 29307477 [TBL] [Abstract][Full Text] [Related]
18. Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons. Kroken AR; Blum FC; Zuverink M; Barbieri JT Infect Immun; 2017 Jan; 85(1):. PubMed ID: 27795365 [TBL] [Abstract][Full Text] [Related]
19. Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry. Karalewitz AP; Fu Z; Baldwin MR; Kim JJ; Barbieri JT J Biol Chem; 2012 Nov; 287(48):40806-16. PubMed ID: 23027864 [TBL] [Abstract][Full Text] [Related]
20. Identification of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A). Jacky BP; Garay PE; Dupuy J; Nelson JB; Cai B; Molina Y; Wang J; Steward LE; Broide RS; Francis J; Aoki KR; Stevens RC; Fernández-Salas E PLoS Pathog; 2013; 9(5):e1003369. PubMed ID: 23696738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]