These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32088408)

  • 1. Evaluating the causal contribution of fronto-parietal cortices to the control of the bottom-up and top-down visual attention using fMRI-guided TMS.
    Wang M; Yu B; Luo C; Fogelson N; Zhang J; Jin Z; Li L
    Cortex; 2020 May; 126():200-212. PubMed ID: 32088408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study.
    Yan Y; Wei R; Zhang Q; Jin Z; Li L
    Sci Rep; 2016 Jul; 6():30300. PubMed ID: 27452715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TMS of the right angular gyrus modulates priming of pop-out in visual search: combined TMS-ERP evidence.
    Taylor PC; Muggleton NG; Kalla R; Walsh V; Eimer M
    J Neurophysiol; 2011 Dec; 106(6):3001-9. PubMed ID: 21880940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Selective Attention P300 Source in Frontal-Parietal Lobe: ERP and fMRI Study.
    Zhang Q; Luo C; Ngetich R; Zhang J; Jin Z; Li L
    Brain Topogr; 2022 Nov; 35(5-6):636-650. PubMed ID: 36178537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of frontal and parietal cortices in the control of bottom-up and top-down attention in humans.
    Li L; Gratton C; Yao D; Knight RT
    Brain Res; 2010 Jul; 1344():173-84. PubMed ID: 20470762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causal Evidence for the Role of Neuronal Oscillations in Top-Down and Bottom-Up Attention.
    Riddle J; Hwang K; Cellier D; Dhanani S; D'Esposito M
    J Cogn Neurosci; 2019 May; 31(5):768-779. PubMed ID: 30726180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems.
    Leitão J; Thielscher A; Tünnerhoff J; Noppeney U
    J Neurosci; 2015 Aug; 35(32):11445-57. PubMed ID: 26269649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemispheric differences in frontal and parietal influences on human occipital cortex: direct confirmation with concurrent TMS-fMRI.
    Ruff CC; Blankenburg F; Bjoertomt O; Bestmann S; Weiskopf N; Driver J
    J Cogn Neurosci; 2009 Jun; 21(6):1146-61. PubMed ID: 18752395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causal modulation of right hemisphere fronto-parietal phase synchrony with Transcranial Magnetic Stimulation during a conscious visual detection task.
    Stengel C; Vernet M; Amengual JL; Valero-Cabré A
    Sci Rep; 2021 Feb; 11(1):3807. PubMed ID: 33589681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of spatial priming within the fronto-parietal attention network: A TMS study.
    Kehrer S; Kraft A; Koch SP; Kathmann N; Irlbacher K; Brandt SA
    Neuropsychologia; 2015 Jul; 74():30-6. PubMed ID: 25448855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual selection and the human frontal eye fields: effects of frontal transcranial magnetic stimulation on partial report analyzed by Bundesen's theory of visual attention.
    Hung J; Driver J; Walsh V
    J Neurosci; 2011 Nov; 31(44):15904-13. PubMed ID: 22049433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age.
    Madden DJ; Parks EL; Tallman CW; Boylan MA; Hoagey DA; Cocjin SB; Johnson MA; Chou YH; Potter GG; Chen NK; Packard LE; Siciliano RE; Monge ZA; Diaz MT
    Hum Brain Mapp; 2017 Apr; 38(4):2128-2149. PubMed ID: 28052456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related frontoparietal changes during the control of bottom-up and top-down attention: an ERP study.
    Li L; Gratton C; Fabiani M; Knight RT
    Neurobiol Aging; 2013 Feb; 34(2):477-88. PubMed ID: 22459599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of parietal TMS on visual and auditory processing at the primary cortical level -- a concurrent TMS-fMRI study.
    Leitão J; Thielscher A; Werner S; Pohmann R; Noppeney U
    Cereb Cortex; 2013 Apr; 23(4):873-84. PubMed ID: 22490546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Role of the Dorsolateral Prefrontal Cortex and Posterior Parietal Cortex in Memory-Guided Attention With Repetitive Transcranial Magnetic Stimulation.
    Wang M; Yang P; Wan C; Jin Z; Zhang J; Li L
    Front Hum Neurosci; 2018; 12():236. PubMed ID: 29930501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.
    Battelli L; Grossman ED; Plow EB
    Brain Stimul; 2017; 10(2):263-269. PubMed ID: 27838275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.