BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32088440)

  • 1. Antibiotic contaminants reduced the treatment efficiency of UV-C on Microcystis aeruginosa through hormesis.
    Jiang Y; Liu Y; Zhang J
    Environ Pollut; 2020 Jun; 261():114193. PubMed ID: 32088440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibiotics induced alterations in cell density, photosynthesis, microcystin synthesis and proteomic expression of Microcystis aeruginosa during CuSO
    Jiang Y; Liu Y; Zhang J
    Aquat Toxicol; 2020 May; 222():105473. PubMed ID: 32203795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotics promoted the recovery of Microcystis aeruginosa after UV-B radiation at cellular and proteomic levels.
    Jiang Y; Liu Y; Zhang J; Gao B
    Ecotoxicol Environ Saf; 2020 Mar; 190():110080. PubMed ID: 31855790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic mechanisms for the stimulatory effects of antibiotics on Microcystis aeruginosa during hydrogen peroxide treatment.
    Liu Y; Zhang J; Gao B
    Chemosphere; 2020 May; 247():125837. PubMed ID: 31927185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of antibiotic contaminants on Microcystis aeruginosa during potassium permanganate treatment.
    Liu Y; Cui M; Zhang J; Gao B
    Harmful Algae; 2020 Feb; 92():101741. PubMed ID: 32113608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic mechanisms for the combined stimulatory effects of glyphosate and antibiotic contaminants on Microcystis aeruginosa.
    Xu S; Liu Y; Zhang J; Gao B
    Chemosphere; 2021 Mar; 267():129244. PubMed ID: 33321278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation effects of ciprofloxacin and sulphamethoxazole in Microcystis aeruginosa and isobaric tag for relative and absolute quantitation-based screening of antibiotic targets.
    Liu Y; Chen S; Zhang J; Li X; Gao B
    Mol Ecol; 2017 Jan; 26(2):689-701. PubMed ID: 27864907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels.
    Jiang Y; Liu Y; Zhang J
    J Hazard Mater; 2021 Mar; 406():124722. PubMed ID: 33296757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin.
    Liu Y; Chen S; Zhang J; Gao B
    Water Res; 2016 Apr; 93():141-152. PubMed ID: 26900975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormesis effects of amoxicillin on growth and cellular biosynthesis of Microcystis aeruginosa at different nitrogen levels.
    Liu Y; Chen X; Zhang J; Gao B
    Microb Ecol; 2015 Apr; 69(3):608-17. PubMed ID: 25388759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of mixed antibiotics on Microcystis aeruginosa during the application of glyphosate and hydrogen peroxide algaecides.
    Yu S; Liu Y; Zhang J; Gao B
    J Phycol; 2019 Apr; 55(2):457-465. PubMed ID: 30633819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa.
    Ou H; Gao N; Deng Y; Qiao J; Wang H
    Water Res; 2012 Mar; 46(4):1241-50. PubMed ID: 22209277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels.
    Yang M; Wang X
    Sci Total Environ; 2019 Mar; 658():439-448. PubMed ID: 30579201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nonylphenol on the growth and microcystin production of Microcystis strains.
    Wang J; Xie P; Guo N
    Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of low or medium-pressure UV irradiation on the release of intracellular microcystin.
    Sakai H; Oguma K; Katayama H; Ohgaki S
    Water Res; 2007 Aug; 41(15):3458-64. PubMed ID: 17548104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and transcriptional responses in Microcystis aeruginosa exposed to two antibiotic contaminants.
    Liu Y; Zhang J; Gao B
    Microb Ecol; 2015 Apr; 69(3):535-43. PubMed ID: 25342538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term exposure to antibiotic mixtures favors microcystin synthesis and release in Microcystis aeruginosa with different morphologies.
    Wang Z; Chen Q; Zhang J; Dong J; Ao Y; Wang M; Wang X
    Chemosphere; 2019 Nov; 235():344-353. PubMed ID: 31265980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effects of binary antibiotic mixture on growth, microcystin production, and extracellular release of Microcystis aeruginosa: application of response surface methodology.
    Wang Z; Chen Q; Hu L; Wang M
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):736-748. PubMed ID: 29063395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of coexisting spiramycin contaminant on the harm of Microcystis aeruginosa at different nitrogen levels.
    Liu Y; Wang F; Chen X; Zhang J; Gao B
    J Hazard Mater; 2015 Mar; 285():517-24. PubMed ID: 25559779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.
    Liu Y; Chen S; Chen X; Zhang J; Gao B
    J Hazard Mater; 2015 Oct; 297():83-91. PubMed ID: 25956638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.