These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3208860)

  • 41. Quantitative electrophysiological studies of regenerating visuotopic maps in goldfish--I. Early recovery of dimming sensitivity in tectum and torus longitudinalis.
    Northmore DP
    Neuroscience; 1989; 32(3):739-47. PubMed ID: 2601842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of the visual cortex on responses of retinal ganglion cells in the rat.
    Molotchnikoff S; Tremblay F
    J Neurosci Res; 1983; 10(4):397-409. PubMed ID: 6663650
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cat retinal ganglion cells: size and shape of receptive field centres.
    Hammond P
    J Physiol; 1974 Oct; 242(1):99-118. PubMed ID: 4436829
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction between center and surround in rabbit retinal ganglion cells.
    Merwine DK; Amthor FR; Grzywacz NM
    J Neurophysiol; 1995 Apr; 73(4):1547-67. PubMed ID: 7643166
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina.
    Kaiser PK; Lee BB; Martin PR; Valberg A
    J Physiol; 1990 Mar; 422():153-83. PubMed ID: 2352178
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rhythmicity in rabbit retinal ganglion cell responses.
    Ariel M; Daw NW; Rader RK
    Vision Res; 1983; 23(12):1485-93. PubMed ID: 6666049
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Hermann grid illusion: a tool for studying human perspective field organization.
    Spillmann L
    Perception; 1994; 23(6):691-708. PubMed ID: 7845762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat.
    Derrington AM; Lennie P
    J Physiol; 1982 Dec; 333():343-66. PubMed ID: 7182469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Periodic and nonperiodic burst responses of frog (Rana pipiens) retinal ganglion cells.
    Stiles M; Tzanakou E; Michalak R; Unnikrishnan KP; Goyal P; Harth E
    Exp Neurol; 1985 Apr; 88(1):176-97. PubMed ID: 3872229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Photoreceptor organization of the receptive fields of the frog retina and the patterns of visual signal processing].
    Funtikov BA; Koreshev AIa
    Fiziol Zh SSSR Im I M Sechenova; 1984 Oct; 70(10):1388-93. PubMed ID: 6510528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse.
    Marco SD; Protti DA; Solomon SG
    J Neurophysiol; 2013 Sep; 110(6):1426-40. PubMed ID: 23843429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Retinal ganglion-cell density and receptive-field size as determinants of photopic flicker sensitivity across the human visual field.
    Raninen A; Rovamo J
    J Opt Soc Am A; 1987 Aug; 4(8):1620-6. PubMed ID: 3625345
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The periphery effect in cat retinal ganglion cells: variation with functional class and eccentricity.
    Rapaport DH; Stone J
    Exp Brain Res; 1988; 70(1):73-8. PubMed ID: 3402569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.
    Svirskis G; Baranauskas G; Svirskiene N; Tkatch T
    PLoS One; 2015; 10(9):e0139472. PubMed ID: 26414356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Retinal ganglion cell adaptation to small luminance fluctuations.
    Freeman DK; Graña G; Passaglia CL
    J Neurophysiol; 2010 Aug; 104(2):704-12. PubMed ID: 20538771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Opposing motion inhibits responses of direction-selective ganglion cells in the fish retina.
    Damjanović I; Maximova E; Aliper A; Maximov P; Maximov V
    J Integr Neurosci; 2015 Mar; 14(1):53-72. PubMed ID: 25608593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional morphology of frog retinal ganglion cells and their central projections: the dimming detectors.
    Stirling RV; Merrill EG
    J Comp Neurol; 1987 Apr; 258(4):477-95. PubMed ID: 3495556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. "Small-tufted" ganglion cells and two visual systems for the detection of object motion in rabbit retina.
    Famiglietti EV
    Vis Neurosci; 2005; 22(4):509-34. PubMed ID: 16212708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.