BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32088900)

  • 1. Epigenetic Barcodes for Detection of Adulterated Plants and Plant-Derived Products.
    Busconi M; Soffritti G; Mozos Pascual ML; Fernandez JA
    Methods Mol Biol; 2020; 2093():227-242. PubMed ID: 32088900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and Epigenetic Approaches for the Possible Detection of Adulteration and Auto-Adulteration in Saffron (Crocus sativus L.) Spice.
    Soffritti G; Busconi M; Sánchez RA; Thiercelin JM; Polissiou M; Roldán M; Fernández JA
    Molecules; 2016 Mar; 21(3):343. PubMed ID: 26978342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic stability in Saffron (Crocus sativus L.) accessions during four consecutive years of cultivation and vegetative propagation under open field conditions.
    Busconi M; Soffritti G; Stagnati L; Marocco A; Marcos Martínez J; De Los Mozos Pascual M; Fernandez JA
    Plant Sci; 2018 Dec; 277():1-10. PubMed ID: 30466573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AFLP and MS-AFLP analysis of the variation within saffron crocus (Crocus sativus L.) germplasm.
    Busconi M; Colli L; Sánchez RA; Santaella M; De-Los-Mozos Pascual M; Santana O; Roldán M; Fernández JA
    PLoS One; 2015; 10(4):e0123434. PubMed ID: 25885113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii.
    Marfil CF; Camadro EL; Masuelli RW
    BMC Plant Biol; 2009 Feb; 9():21. PubMed ID: 19232108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule real-time transcript sequencing identified flowering regulatory genes in Crocus sativus.
    Qian X; Sun Y; Zhou G; Yuan Y; Li J; Huang H; Xu L; Li L
    BMC Genomics; 2019 Nov; 20(1):857. PubMed ID: 31726972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of adulteration in the market samples of saffron using morphology, HPLC, HPTLC, and DNA barcoding methods.
    Bhooma V; Vassou SL; Kaliappan I; Parani M
    Genome; 2024 Feb; 67(2):43-52. PubMed ID: 37922517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoschizomers and amplified fragment length polymorphism for the detection of specific cytosine methylation changes.
    Ruiz-García L; Cabezas JA; de María N; Cervera MT
    Methods Mol Biol; 2010; 631():63-74. PubMed ID: 20204869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of EST-based methylation specific PCR (MSP) markers in Crocus sativus.
    Choudhary V; Shekhawat D; Choudhary A; Jaiswal V
    Mol Biol Rep; 2022 Dec; 49(12):11695-11703. PubMed ID: 36181582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors.
    Tsaftaris A; Pasentsis K; Makris A; Darzentas N; Polidoros A; Kalivas A; Argiriou A
    J Plant Physiol; 2011 Sep; 168(14):1675-84. PubMed ID: 21621873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological Epigenetics: Beyond MS-AFLP.
    Schrey AW; Alvarez M; Foust CM; Kilvitis HJ; Lee JD; Liebl AL; Martin LB; Richards CL; Robertson M
    Integr Comp Biol; 2013 Aug; 53(2):340-50. PubMed ID: 23583961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barcoding melting curve analysis for rapid, sensitive, and discriminating authentication of saffron (Crocus sativus L.) from its adulterants.
    Jiang C; Cao L; Yuan Y; Chen M; Jin Y; Huang L
    Biomed Res Int; 2014; 2014():809037. PubMed ID: 25548775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.
    Araki KS; Kubo T; Kudoh H
    PLoS One; 2017; 12(5):e0178145. PubMed ID: 28542457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of DNA Cytosine Methylation Patterns Using Methylation-Sensitive Amplification Polymorphism (MSAP).
    Guevara MÁ; de María N; Sáez-Laguna E; Vélez MD; Cervera MT; Cabezas JA
    Methods Mol Biol; 2017; 1456():99-112. PubMed ID: 27770361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic Approaches in Non-Model Plants.
    Boquete MT; Wagemaker NCAM; Vergeer P; Mounger J; Richards CL
    Methods Mol Biol; 2020; 2093():203-215. PubMed ID: 32088898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes.
    Schmidt T; Heitkam T; Liedtke S; Schubert V; Menzel G
    New Phytol; 2019 Jun; 222(4):1965-1980. PubMed ID: 30690735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Overview of Current Research in Plant Epigenetic and Epigenomic Phenomena.
    McKeown P; Spillane C
    Methods Mol Biol; 2020; 2093():3-13. PubMed ID: 32088885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics.
    Petrakis EA; Polissiou MG
    Talanta; 2017 Jan; 162():558-566. PubMed ID: 27837871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greek PDO saffron authentication studies using species specific molecular markers.
    Bosmali I; Ordoudi SA; Tsimidou MZ; Madesis P
    Food Res Int; 2017 Oct; 100(Pt 1):899-907. PubMed ID: 28873765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight of Saffron Proteome by Gel-Electrophoresis.
    Paredi G; Raboni S; Marchesani F; Ordoudi SA; Tsimidou MZ; Mozzarelli A
    Molecules; 2016 Jan; 21(2):167. PubMed ID: 26840283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.