These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1088 related articles for article (PubMed ID: 32089089)
1. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. Griffin M; Castro N; Bas O; Saifzadeh S; Butler P; Hutmacher DW Tissue Eng Part B Rev; 2020 Jun; 26(3):272-283. PubMed ID: 32089089 [TBL] [Abstract][Full Text] [Related]
2. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. Miller AT; Safranski DL; Wood C; Guldberg RE; Gall K J Mech Behav Biomed Mater; 2017 Nov; 75():1-13. PubMed ID: 28689135 [TBL] [Abstract][Full Text] [Related]
3. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. Bachtiar EO; Erol O; Millrod M; Tao R; Gracias DH; Romer LH; Kang SH J Mech Behav Biomed Mater; 2020 Apr; 104():103649. PubMed ID: 32174407 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Hung KC; Tseng CS; Hsu SH Adv Healthc Mater; 2014 Oct; 3(10):1578-87. PubMed ID: 24729580 [TBL] [Abstract][Full Text] [Related]
5. A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing. Feng Z; Wang D; Zheng Y; Zhao L; Xu T; Guo Z; Irfan Hussain M; Zeng J; Lou L; Sun Y; Jiang H Biofabrication; 2020 May; 12(3):035015. PubMed ID: 32150742 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Zhang C; Wen X; Vyavahare NR; Boland T Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156 [TBL] [Abstract][Full Text] [Related]
8. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094 [TBL] [Abstract][Full Text] [Related]
9. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Wen YT; Dai NT; Hsu SH Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604 [TBL] [Abstract][Full Text] [Related]
11. 3D printing with silk: considerations and applications. DeBari MK; Keyser MN; Bai MA; Abbott RD Connect Tissue Res; 2020 Mar; 61(2):163-173. PubMed ID: 30558445 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional (3D) synthetic printing for the manufacture of non-biodegradable models, tools and implants used in surgery: a review of current methods. Kirby B; Kenkel JM; Zhang AY; Amirlak B; Suszynski TM J Med Eng Technol; 2021 Jan; 45(1):14-21. PubMed ID: 33215944 [TBL] [Abstract][Full Text] [Related]
13. Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications. Chen RD; Huang CF; Hsu SH Carbohydr Polym; 2019 May; 212():75-88. PubMed ID: 30832883 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related]
15. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. Meng M; Wang J; Huang H; Liu X; Zhang J; Li Z J Orthop Translat; 2023 Sep; 42():94-112. PubMed ID: 37675040 [TBL] [Abstract][Full Text] [Related]
16. Optimization of photocrosslinkable resin components and 3D printing process parameters. Guerra AJ; Lammel-Lindemann J; Katko A; Kleinfehn A; Rodriguez CA; Catalani LH; Becker ML; Ciurana J; Dean D Acta Biomater; 2019 Oct; 97():154-161. PubMed ID: 31352105 [TBL] [Abstract][Full Text] [Related]
17. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145 [TBL] [Abstract][Full Text] [Related]
18. 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review. Pervaiz S; Qureshi TA; Kashwani G; Kannan S Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443044 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting. Hsiao SH; Hsu SH ACS Appl Mater Interfaces; 2018 Sep; 10(35):29273-29287. PubMed ID: 30133249 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Kucinska-Lipka J; Gubanska I; Janik H; Sienkiewicz M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():166-76. PubMed ID: 25491973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]