BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32089291)

  • 21. Bioassay-guided detection, identification and assessment of antibacterial and anti-inflammatory compounds from olive tree flower extracts by high-performance thin-layer chromatography linked to spectroscopy.
    Agatonovic-Kustrin S; Wong S; Dolzhenko AV; Gegechkori V; Morton DW
    J Pharm Biomed Anal; 2024 Feb; 239():115912. PubMed ID: 38128161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HPTLC and ATR/FTIR Characterization of Antioxidants in Different Rosemary Extracts.
    Agatonovic-Kustrin S; Balyklova KS; Gegechkori V; Morton DW
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect-Directed Profiling of
    Nikolaichuk H; Choma IM; Morlock GE
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of
    Quan NV; Xuan TD; Tran HD; Thuy NTD; Trang LT; Huong CT; Andriana Y; Tuyen PT
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30744084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: an in vitro study.
    El-Beshbishy H; Bahashwan S
    Toxicol Ind Health; 2012 Feb; 28(1):42-50. PubMed ID: 21636683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new integrated HPTLC - ATR/FTIR approach in marine algae bioprofiling.
    Agatonovic-Kustrin S; Ramenskaya G; Kustrin E; Ortakand DB; Morton DW
    J Pharm Biomed Anal; 2020 Sep; 189():113488. PubMed ID: 32745905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinction and valorization of 30 root extracts of five goldenrod (Solidago) species.
    Móricz ÁM; Jamshidi-Aidji M; Krüzselyi D; Darcsi A; Böszörményi A; Csontos P; Béni S; Ott PG; Morlock GE
    J Chromatogr A; 2020 Jan; 1611():460602. PubMed ID: 31653473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.
    Ademiluyi AO; Oboh G
    Exp Toxicol Pathol; 2013 Mar; 65(3):305-9. PubMed ID: 22005499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HPTLC - Bioautographic methods for selective detection of the antioxidant and α-amylase inhibitory activity in plant extracts.
    Agatonovic-Kustrin S; Morton DW
    MethodsX; 2018; 5():797-802. PubMed ID: 30101083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe
    Afolabi OB; Oloyede OI; Agunbiade SO
    J Integr Med; 2018 May; 16(3):192-198. PubMed ID: 29706572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of antioxidant capacity, α-amylase and lipase inhibitory activity of Crotalaria juncea Linn in vitro inhibitory activity of Crotalaria Juncea Linn.
    Dinakaran SK; Banji D; Avasarala H; Banji O
    J Diet Suppl; 2014 Jun; 11(2):175-83. PubMed ID: 24670121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of alpha amylase inhibitors from Syzygium cumini Linn seeds.
    Karthic K; Kirthiram KS; Sadasivam S; Thayumanavan B
    Indian J Exp Biol; 2008 Sep; 46(9):677-80. PubMed ID: 18949899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioassay-guided separation of an alpha-amylase inhibitor anthocyanin from Vaccinium arctostaphylos berries.
    Nickavar B; Amin G
    Z Naturforsch C J Biosci; 2010; 65(9-10):567-70. PubMed ID: 21138057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle.
    Ahmed M; Fatima H; Qasim M; Gul B; Ihsan-Ul-Haq
    BMC Complement Altern Med; 2017 Aug; 17(1):386. PubMed ID: 28774308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitors of α-glucosidase and α-amylase from Cyperus rotundus.
    Tran HH; Nguyen MC; Le HT; Nguyen TL; Pham TB; Chau VM; Nguyen HN; Nguyen TD
    Pharm Biol; 2014 Jan; 52(1):74-7. PubMed ID: 24044731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae.
    Triantaphyllou K; Blekas G; Boskou D
    Int J Food Sci Nutr; 2001 Jul; 52(4):313-7. PubMed ID: 11474895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypoglycaemic and amylase inhibitory activities of leaves of Spondias mombin Linn.
    Fred-Jaiyesimi AA; Wilkins MR; Abo KA
    Afr J Med Med Sci; 2009 Dec; 38(4):343-9. PubMed ID: 20499628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CHEMICAL COMPOSITION AND ANTIBACTERIAL ACTIVITY OF SOME MEDICINAL PLANTS FROM LAMIACEAE FAMILY.
    Kozłowska M; Laudy AE; Przybył J; Ziarno M; Majewska E
    Acta Pol Pharm; 2015; 72(4):757-67. PubMed ID: 26647633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation.
    Justino AB; Miranda NC; Franco RR; Martins MM; Silva NMD; Espindola FS
    Biomed Pharmacother; 2018 Apr; 100():83-92. PubMed ID: 29425747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of the antidiabetic potential of
    Tan DC; Idris KI; Kassim NK; Lim PC; Safinar Ismail I; Hamid M; Ng RC
    Pharm Biol; 2019 Dec; 57(1):345-354. PubMed ID: 31185767
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.