BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32089544)

  • 21. LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis.
    Yu EJ; Hooker E; Johnson DT; Kwak MK; Zou K; Luong R; He Y; Sun Z
    PLoS One; 2017; 12(3):e0174357. PubMed ID: 28323888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inappropriate activation of androgen receptor by relaxin via beta-catenin pathway.
    Liu S; Vinall RL; Tepper C; Shi XB; Xue LR; Ma AH; Wang LY; Fitzgerald LD; Wu Z; Gandour-Edwards R; deVere White RW; Kung HJ
    Oncogene; 2008 Jan; 27(4):499-505. PubMed ID: 17653089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells.
    Wan X; Liu J; Lu JF; Tzelepi V; Yang J; Starbuck MW; Diao L; Wang J; Efstathiou E; Vazquez ES; Troncoso P; Maity SN; Navone NM
    Clin Cancer Res; 2012 Feb; 18(3):726-36. PubMed ID: 22298898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A direct beta-catenin-independent interaction between androgen receptor and T cell factor 4.
    Amir AL; Barua M; McKnight NC; Cheng S; Yuan X; Balk SP
    J Biol Chem; 2003 Aug; 278(33):30828-34. PubMed ID: 12799378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissecting transcription of the 8q24-MYC locus in prostate cancer recognizes the equilibration between androgen receptor direct and indirect dual-functions.
    Guo J; Wei Z; Jia T; Wang L; Nama N; Liang J; Liao X; Liu X; Gao Y; Liu X; Wang K; Fu B; Chen SS
    J Transl Med; 2023 Oct; 21(1):716. PubMed ID: 37828515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse.
    Pearson HB; Phesse TJ; Clarke AR
    Cancer Res; 2009 Jan; 69(1):94-101. PubMed ID: 19117991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epithelial Hic-5/ARA55 expression contributes to prostate tumorigenesis and castrate responsiveness.
    Li X; Martinez-Ferrer M; Botta V; Uwamariya C; Banerjee J; Bhowmick NA
    Oncogene; 2011 Jan; 30(2):167-77. PubMed ID: 20818421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of the canonical Wnt activity by androgen signaling in prostate epithelial basal stem cells.
    Horton C; Liu Y; Wang J; Green J; Tsyporin J; Chen B; Wang ZA
    Stem Cell Reports; 2023 Jun; 18(6):1355-1370. PubMed ID: 37172587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stromal androgen signaling acts as tumor niches to drive prostatic basal epithelial progenitor-initiated oncogenesis.
    Hiroto A; Kim WK; Pineda A; He Y; Lee DH; Le V; Olson AW; Aldahl J; Nenninger CH; Buckley AJ; Xiao GQ; Geradts J; Sun Z
    Nat Commun; 2022 Nov; 13(1):6552. PubMed ID: 36323713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of androgen receptor signaling from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells involves a gain of function in c-Myc regulation.
    Vander Griend DJ; Litvinov IV; Isaacs JT
    Int J Biol Sci; 2014; 10(6):627-42. PubMed ID: 24948876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNA-744 promotes prostate cancer progression through aberrantly activating Wnt/β-catenin signaling.
    Guan H; Liu C; Fang F; Huang Y; Tao T; Ling Z; You Z; Han X; Chen S; Xu B; Chen M
    Oncotarget; 2017 Feb; 8(9):14693-14707. PubMed ID: 28107193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiation-induced glucocorticoid receptor promotes CD44+ prostate cancer stem cell growth through activation of SGK1-Wnt/β-catenin signaling.
    Chen F; Chen X; Ren Y; Weng G; Keng PC; Chen Y; Lee SO
    J Mol Med (Berl); 2019 Aug; 97(8):1169-1182. PubMed ID: 31187175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets.
    Qiu X; Boufaied N; Hallal T; Feit A; de Polo A; Luoma AM; Alahmadi W; Larocque J; Zadra G; Xie Y; Gu S; Tang Q; Zhang Y; Syamala S; Seo JH; Bell C; O'Connor E; Liu Y; Schaeffer EM; Jeffrey Karnes R; Weinmann S; Davicioni E; Morrissey C; Cejas P; Ellis L; Loda M; Wucherpfennig KW; Pomerantz MM; Spratt DE; Corey E; Freedman ML; Shirley Liu X; Brown M; Long HW; Labbé DP
    Nat Commun; 2022 May; 13(1):2559. PubMed ID: 35562350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians.
    Shiina M; Hashimoto Y; Kato T; Yamamura S; Tanaka Y; Majid S; Saini S; Varahram S; Kulkarni P; Dasgupta P; Mitsui Y; Sumida M; Tabatabai L; Deng G; Kumar D; Dahiya R
    Oncotarget; 2017 Jan; 8(5):8356-8368. PubMed ID: 28039468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of the Wnt/β-Catenin Pathway Overcomes Resistance to Enzalutamide in Castration-Resistant Prostate Cancer.
    Zhang Z; Cheng L; Li J; Farah E; Atallah NM; Pascuzzi PE; Gupta S; Liu X
    Cancer Res; 2018 Jun; 78(12):3147-3162. PubMed ID: 29700003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deptor Is a Novel Target of Wnt/β-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth.
    Wang Q; Zhou Y; Rychahou P; Harris JW; Zaytseva YY; Liu J; Wang C; Weiss HL; Liu C; Lee EY; Evers BM
    Cancer Res; 2018 Jun; 78(12):3163-3175. PubMed ID: 29666061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Divergent Androgen Receptor and Beta-Catenin Signaling in Prostate Cancer Cells.
    Lee E; Ha S; Logan SK
    PLoS One; 2015; 10(10):e0141589. PubMed ID: 26509262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Androgen activates β-catenin signaling in bladder cancer cells.
    Li Y; Zheng Y; Izumi K; Ishiguro H; Ye B; Li F; Miyamoto H
    Endocr Relat Cancer; 2013 Jun; 20(3):293-304. PubMed ID: 23447569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of short polyglutamine tracts and p160 coactivators on the transactivation of the androgen receptor.
    Shi XB; Xue L; Shi D; deVere White RW
    Cancer Biother Radiopharm; 2011 Apr; 26(2):191-201. PubMed ID: 21539451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A feedback circuit comprising EHD1 and 14-3-3ζ sustains β-catenin/c-Myc-mediated aerobic glycolysis and proliferation in non-small cell lung cancer.
    Huang J; Tian F; Song Y; Cao M; Yan S; Lan X; Cui Y; Cui Y; Cui Y; Jia D; Cai L; Xing Y; Wang X
    Cancer Lett; 2021 Nov; 520():12-25. PubMed ID: 34217785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.