These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 32090213)
1. Mass spectrometry reveals the assembly pathway of encapsulated ferritins and highlights a dynamic ferroxidase interface. Ross J; Lambert T; Piergentili C; He D; Waldron KJ; Mackay CL; Marles-Wright J; Clarke DJ Chem Commun (Camb); 2020 Mar; 56(23):3417-3420. PubMed ID: 32090213 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. He D; Hughes S; Vanden-Hehir S; Georgiev A; Altenbach K; Tarrant E; Mackay CL; Waldron KJ; Clarke DJ; Marles-Wright J Elife; 2016 Aug; 5():. PubMed ID: 27529188 [TBL] [Abstract][Full Text] [Related]
3. Conservation of the structural and functional architecture of encapsulated ferritins in bacteria and archaea. He D; Piergentili C; Ross J; Tarrant E; Tuck LR; Mackay CL; McIver Z; Waldron KJ; Clarke DJ; Marles-Wright J Biochem J; 2019 Mar; 476(6):975-989. PubMed ID: 30837306 [TBL] [Abstract][Full Text] [Related]
4. Dissecting the structural and functional roles of a putative metal entry site in encapsulated ferritins. Piergentili C; Ross J; He D; Gallagher KJ; Stanley WA; Adam L; Mackay CL; Baslé A; Waldron KJ; Clarke DJ; Marles-Wright J J Biol Chem; 2020 Nov; 295(46):15511-15526. PubMed ID: 32878987 [TBL] [Abstract][Full Text] [Related]
5. Self-assembly is prerequisite for catalysis of Fe(II) oxidation by catalytically active subunits of ferritin. Ebrahimi KH; Hagedoorn PL; Hagen WR J Biol Chem; 2015 Oct; 290(44):26801-10. PubMed ID: 26370076 [TBL] [Abstract][Full Text] [Related]
6. The universal mechanism for iron translocation to the ferroxidase site in ferritin, which is mediated by the well conserved transit site. Masuda T; Goto F; Yoshihara T; Mikami B Biochem Biophys Res Commun; 2010 Sep; 400(1):94-9. PubMed ID: 20705053 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin. Masuda T; Goto F; Yoshihara T; Mikami B J Biol Chem; 2010 Feb; 285(6):4049-4059. PubMed ID: 20007325 [TBL] [Abstract][Full Text] [Related]
8. Ferritin, cellular iron storage and regulation. Arosio P; Elia L; Poli M IUBMB Life; 2017 Jun; 69(6):414-422. PubMed ID: 28349628 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of iron mineralization in ferritins: one size does not fit all. Bradley JM; Moore GR; Le Brun NE J Biol Inorg Chem; 2014 Aug; 19(6):775-85. PubMed ID: 24748222 [TBL] [Abstract][Full Text] [Related]
10. Ferritin with Atypical Ferroxidase Centers Takes B-Channels as the Pathway for Fe Wang W; Zhang Y; Zhao G; Wang H Inorg Chem; 2021 May; 60(10):7207-7216. PubMed ID: 33852289 [TBL] [Abstract][Full Text] [Related]
11. Is His54 a gating residue for the ferritin ferroxidase site? Bernacchioni C; Ciambellotti S; Theil EC; Turano P Biochim Biophys Acta; 2015 Sep; 1854(9):1118-22. PubMed ID: 25727028 [TBL] [Abstract][Full Text] [Related]
12. Key carboxylate residues for iron transit through the prokaryotic ferritin Bradley JM; Fair J; Hemmings AM; Le Brun NE Microbiology (Reading); 2021 Nov; 167(11):. PubMed ID: 34825885 [TBL] [Abstract][Full Text] [Related]
13. Large protein organelles form a new iron sequestration system with high storage capacity. Giessen TW; Orlando BJ; Verdegaal AA; Chambers MG; Gardener J; Bell DC; Birrane G; Liao M; Silver PA Elife; 2019 Jul; 8():. PubMed ID: 31282860 [TBL] [Abstract][Full Text] [Related]
14. Construction of a ferroxidase center in human ferritin L-chain. Levi S; Corsi B; Rovida E; Cozzi A; Santambrogio P; Albertini A; Arosio P J Biol Chem; 1994 Dec; 269(48):30334-9. PubMed ID: 7982945 [TBL] [Abstract][Full Text] [Related]
15. Functionality of the three-site ferroxidase center of Escherichia coli bacterial ferritin (EcFtnA). Bou-Abdallah F; Yang H; Awomolo A; Cooper B; Woodhall MR; Andrews SC; Chasteen ND Biochemistry; 2014 Jan; 53(3):483-95. PubMed ID: 24380371 [TBL] [Abstract][Full Text] [Related]
16. QM/MM structural and spectroscopic analysis of the di-iron(II) and di-iron(III) ferroxidase site in M ferritin. Harris TV; Morokuma K Inorg Chem; 2013 Aug; 52(15):8551-63. PubMed ID: 23865546 [TBL] [Abstract][Full Text] [Related]
17. The first crystal structure of crustacean ferritin that is a hybrid type of H and L ferritin. Masuda T; Zang J; Zhao G; Mikami B Protein Sci; 2018 Nov; 27(11):1955-1960. PubMed ID: 30099791 [TBL] [Abstract][Full Text] [Related]
18. The C-terminal regions have an important role in the activity of the ferroxidase center and the stability of Chlorobium tepidum ferritin. Brito C; Matias C; González-Nilo FD; Watt RK; Yévenes A Protein J; 2014 Jun; 33(3):211-20. PubMed ID: 24609571 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of the Myxococcus xanthus encapsulin and ferritin-like cargo system gives insight into its iron storage mechanism. Eren E; Wang B; Winkler DC; Watts NR; Steven AC; Wingfield PT Structure; 2022 Apr; 30(4):551-563.e4. PubMed ID: 35150605 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Tatur J; Hagen WR; Matias PM J Biol Inorg Chem; 2007 Jun; 12(5):615-30. PubMed ID: 17541801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]