BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32090445)

  • 41. Purple sulfur bacteria fix N
    Philippi M; Kitzinger K; Berg JS; Tschitschko B; Kidane AT; Littmann S; Marchant HK; Storelli N; Winkel LHE; Schubert CJ; Mohr W; Kuypers MMM
    Nat Commun; 2021 Aug; 12(1):4774. PubMed ID: 34362886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions between paralogous bacterial enhancer-binding proteins enable metal-dependent regulation of alternative nitrogenases in Azotobacter vinelandii.
    Appia-Ayme C; Little R; Chandra G; de Oliveira Martins C; Bueno Batista M; Dixon R
    Mol Microbiol; 2022 Jul; 118(1-2):105-124. PubMed ID: 35718936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vanadium nitrogenase: a two-hit wonder?
    Hu Y; Lee CC; Ribbe MW
    Dalton Trans; 2012 Jan; 41(4):1118-27. PubMed ID: 22101422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air.
    Arashida H; Kugenuma T; Watanabe M; Maeda I
    J Biosci Bioeng; 2019 May; 127(5):589-593. PubMed ID: 30392964
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic Understanding of N
    Harris DF; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM
    Biochemistry; 2018 Oct; 57(39):5706-5714. PubMed ID: 30183278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression, Isolation, and Characterization of Vanadium Nitrogenase from Azotobacter vinelandii.
    Parison K; Gies-Elterlein J; Trncik C; Einsle O
    Methods Mol Biol; 2021; 2353():97-121. PubMed ID: 34292546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium.
    Pau RN; Mitchenall LA; Robson RL
    J Bacteriol; 1989 Jan; 171(1):124-9. PubMed ID: 2914845
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution of Nitrogen-Fixation Genes in Prokaryotes Containing Alternative Nitrogenases.
    Addo MA; Dos Santos PC
    Chembiochem; 2020 Jun; 21(12):1749-1759. PubMed ID: 32202031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris.
    Karpinets TV; Pelletier DA; Pan C; Uberbacher EC; Melnichenko GV; Hettich RL; Samatova NF
    PLoS One; 2009; 4(2):e4615. PubMed ID: 19242537
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter vinelandii under diazotrophic conditions.
    Noumsi CJ; Pourhassan N; Darnajoux R; Deicke M; Wichard T; Burrus V; Bellenger JP
    Environ Microbiol Rep; 2016 Feb; 8(1):76-84. PubMed ID: 26549632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia.
    Zhang X; Sigman DM; Morel FM; Kraepiel AM
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4782-7. PubMed ID: 24639508
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An alternative path for the evolution of biological nitrogen fixation.
    Boyd ES; Hamilton TL; Peters JW
    Front Microbiol; 2011; 2():205. PubMed ID: 22065963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrogenase phylogeny and the molybdenum dependence of nitrogen fixation in Methanococcus maripaludis.
    Kessler PS; McLarnan J; Leigh JA
    J Bacteriol; 1997 Jan; 179(2):541-3. PubMed ID: 8990309
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii.
    Srivastava S; Dong H; Baars O; Sheng Y
    Geobiology; 2023 Jul; 21(4):507-519. PubMed ID: 36852450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional analysis of multiple nifB genes of Paenibacillus strains in synthesis of Mo-, Fe- and V-nitrogenases.
    Li Q; Zhang H; Zhang L; Chen S
    Microb Cell Fact; 2021 Jul; 20(1):139. PubMed ID: 34281551
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specificity of NifEN and VnfEN for the Assembly of Nitrogenase Active Site Cofactors in Azotobacter vinelandii.
    Pérez-González A; Jimenez-Vicente E; Gies-Elterlein J; Salinero-Lanzarote A; Yang ZY; Einsle O; Seefeldt LC; Dean DR
    mBio; 2021 Aug; 12(4):e0156821. PubMed ID: 34281397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression of an alternative nitrogen fixation system in Azotobacter vinelandii.
    Bishop PE; Jarlenski DM; Hetherington DR
    J Bacteriol; 1982 Jun; 150(3):1244-51. PubMed ID: 6281240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110.
    Sakpirom J; Kantachote D; Siripattanakul-Ratpukdi S; McEvoy J; Khan E
    Chemosphere; 2019 May; 223():455-464. PubMed ID: 30784752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrogen metabolism and nitrogen fixation in wild type and Nif- mutants of Rhodopseudomonas acidophila.
    Siefert E; Pfennig N
    Biochimie; 1978; 60(3):261-5. PubMed ID: 667181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus.
    Masepohl B; Hallenbeck PC
    Adv Exp Med Biol; 2010; 675():49-70. PubMed ID: 20532735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.