These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32090501)

  • 1. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus.
    Zupanc GKH
    Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glia-mediated modulation of extracellular potassium concentration determines the sexually dimorphic output frequency of a model brainstem oscillator.
    Zupanc GKH; Amaro SM; Lehotzky D; Zupanc FB; Leung NY
    J Theor Biol; 2019 Jun; 471():117-124. PubMed ID: 30902592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential.
    Hartman D; Lehotzky D; Ilieş I; Levi M; Zupanc GKH
    J Comput Neurosci; 2021 Nov; 49(4):419-439. PubMed ID: 34032982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish,
    Zupanc GKH
    Front Physiol; 2017; 8():1087. PubMed ID: 29311998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormone-mediated modulation of the electromotor CPG in pulse-type weakly electric fish. Commonalities and differences across species.
    Borde M; Quintana L; Comas V; Silva A
    Dev Neurobiol; 2020 Jan; 80(1-2):70-80. PubMed ID: 31955508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of urethane and MS-222 anesthesia on the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus.
    Eske AI; Lehotzky D; Ahmed M; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 May; 209(3):437-457. PubMed ID: 36799986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale identification of proteins involved in the development of a sexually dimorphic behavior.
    Zupanc GK; Ilies I; Sîrbulescu RF; Zupanc MM
    J Neurophysiol; 2014 Apr; 111(8):1646-54. PubMed ID: 24478160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish.
    Curti S; Comas V; Rivero C; Borde M
    Neuroscience; 2006 Jun; 140(2):491-504. PubMed ID: 16563638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal Dynamics Underlying Communication Signals in a Weakly Electric Fish: Implications for Connectivity in a Pacemaker Network.
    Lucas KM; Warrington J; Lewis TJ; Lewis JE
    Neuroscience; 2019 Mar; 401():21-34. PubMed ID: 30641115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling predicts regulation of central pattern generator oscillations by size and density of the underlying heterogenous network.
    Ilieş I; Zupanc GKH
    J Comput Neurosci; 2023 Feb; 51(1):87-105. PubMed ID: 36201129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity in the structure of electrocommunication signals within a genus of electric fish, Apteronotus.
    Dunlap KD; Larkins-Ford J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):153-61. PubMed ID: 12607044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects.
    Elekes K; Szabo T
    Exp Brain Res; 1985; 60(3):509-20. PubMed ID: 4076373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinctive mechanisms underlie the emission of social electric signals of submission in
    Comas V; Langevin K; Silva A; Borde M
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish.
    Kolodziejski JA; Nelson BS; Smith GT
    J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus.
    Dunlap KD; Thomas P; Zakon HH
    J Comp Physiol A; 1998 Jul; 183(1):77-86. PubMed ID: 9691480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis reveals dominance of gliogenesis over neurogenesis in an adult brainstem oscillator.
    Sîrbulescu RF; Ilieş I; Zupanc GK
    Dev Neurobiol; 2014 Sep; 74(9):934-52. PubMed ID: 24639054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic currents that contribute to a sexually dimorphic communication signal in weakly electric fish.
    Smith GT
    J Comp Physiol A; 1999 Oct; 185(4):379-87. PubMed ID: 10555272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences.
    Moortgat KT; Bullock TH; Sejnowski TJ
    J Neurophysiol; 2000 Feb; 83(2):971-83. PubMed ID: 10669509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1988 Aug; 163(4):445-58. PubMed ID: 3184007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.