BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32090895)

  • 1. Design tools for patient specific and highly controlled melt electrowritten scaffolds.
    Paxton NC; Lanaro M; Bo A; Crooks N; Ross MT; Green N; Tetsworth K; Allenby MC; Gu Y; Wong CS; Powell SK; Woodruff MA
    J Mech Behav Biomed Mater; 2020 May; 105():103695. PubMed ID: 32090895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling the potential of melt electrowriting in regenerative dental medicine.
    Daghrery A; de Souza Araújo IJ; Castilho M; Malda J; Bottino MC
    Acta Biomater; 2023 Jan; 156():88-109. PubMed ID: 35026478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior.
    Turner PR; Yoshida M; Ali MA; Cabral JD
    Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739
    [No Abstract]   [Full Text] [Related]  

  • 5. Degradation of Melt Electrowritten PCL Scaffolds Following Melt Processing and Plasma Surface Treatment.
    Paxton NC; Ho SWK; Tuten BT; Lipton-Duffin J; Woodruff MA
    Macromol Rapid Commun; 2021 Dec; 42(23):e2100433. PubMed ID: 34668263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds.
    Saidy NT; Shabab T; Bas O; Rojas-González DM; Menne M; Henry T; Hutmacher DW; Mela P; De-Juan-Pardo EM
    Front Bioeng Biotechnol; 2020; 8():793. PubMed ID: 32850700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds.
    Barceló X; Eichholz KF; Gonçalves IF; Garcia O; Kelly DJ
    Acta Biomater; 2023 Mar; 158():216-227. PubMed ID: 36638941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects.
    Eichholz KF; Freeman FE; Pitacco P; Nulty J; Ahern D; Burdis R; Browe DC; Garcia O; Hoey DA; Kelly DJ
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35947963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting.
    Saidy NT; Wolf F; Bas O; Keijdener H; Hutmacher DW; Mela P; De-Juan-Pardo EM
    Small; 2019 Jun; 15(24):e1900873. PubMed ID: 31058444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored Melt Electrowritten Scaffolds for the Generation of Sheet-Like Tissue Constructs from Multicellular Spheroids.
    McMaster R; Hoefner C; Hrynevich A; Blum C; Wiesner M; Wittmann K; Dargaville TR; Bauer-Kreisel P; Groll J; Dalton PD; Blunk T
    Adv Healthc Mater; 2019 Apr; 8(7):e1801326. PubMed ID: 30835969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration.
    Hewitt E; Mros S; McConnell M; Cabral JD; Ali A
    Biomed Mater; 2019 Aug; 14(5):055013. PubMed ID: 31318339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork.
    Włodarczyk-Biegun MK; Villiou M; Koch M; Muth C; Wang P; Ott J; Del Campo A
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3899-3911. PubMed ID: 35984428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering.
    Loewner S; Heene S; Baroth T; Heymann H; Cholewa F; Blume H; Blume C
    Front Bioeng Biotechnol; 2022; 10():896719. PubMed ID: 36061443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly compliant biomimetic scaffolds for small diameter tissue-engineered vascular grafts (TEVGs) produced via melt electrowriting (MEW).
    Weekes A; Wehr G; Pinto N; Jenkins J; Li Z; Meinert C; Klein TJ
    Biofabrication; 2023 Dec; 16(1):. PubMed ID: 37992322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature.
    Thorsnes QS; Turner PR; Ali MA; Cabral JD
    Biomedicines; 2023 Nov; 11(12):. PubMed ID: 38137359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of a 3D polymicrobial microcosm biofilm model using melt electrowritten scaffolds.
    Ramachandra SS; Abdal-Hay A; Han P; Lee RSB; Ivanovski S
    Biomater Adv; 2023 Feb; 145():213251. PubMed ID: 36580768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering.
    Gupta D; Singh AK; Dravid A; Bellare J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis.
    Brennan CM; Eichholz KF; Hoey DA
    Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.