These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32090895)

  • 21. Melt electrowritten scaffold architectures to mimic tissue mechanics and guide neo-tissue orientation.
    Federici AS; Tornifoglio B; Lally C; Garcia O; Kelly DJ; Hoey DA
    J Mech Behav Biomed Mater; 2024 Feb; 150():106292. PubMed ID: 38109813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting.
    Chung JHY; Sayyar S; Wallace GG
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds.
    Barceló X; Eichholz K; Gonçalves I; Kronemberger GS; Dufour A; Garcia O; Kelly DJ
    Biofabrication; 2023 Nov; 16(1):. PubMed ID: 37939395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds.
    Abbasi N; Abdal-Hay A; Hamlet S; Graham E; Ivanovski S
    ACS Biomater Sci Eng; 2019 Jul; 5(7):3448-3461. PubMed ID: 33405729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.
    Hamid Q; Snyder J; Wang C; Timmer M; Hammer J; Guceri S; Sun W
    Biofabrication; 2011 Sep; 3(3):034109. PubMed ID: 21727312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topographic Guidance in Melt-Electrowritten Tubular Scaffolds Enhances Engineered Kidney Tubule Performance.
    van Genderen AM; Jansen K; Kristen M; van Duijn J; Li Y; Schuurmans CCL; Malda J; Vermonden T; Jansen J; Masereeuw R; Castilho M
    Front Bioeng Biotechnol; 2020; 8():617364. PubMed ID: 33537294
    [No Abstract]   [Full Text] [Related]  

  • 28. Dimension-Based Design of Melt Electrowritten Scaffolds.
    Hrynevich A; Elçi BŞ; Haigh JN; McMaster R; Youssef A; Blum C; Blunk T; Hochleitner G; Groll J; Dalton PD
    Small; 2018 May; 14(22):e1800232. PubMed ID: 29707891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process?
    Bartolf-Kopp M; Jungst T
    Adv Healthc Mater; 2024 Apr; ():e2400426. PubMed ID: 38607966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding.
    Bolle ECL; Nicdao D; Dalton PD; Dargaville TR
    Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontium-Substituted Bioactive Glass/Polycaprolactone Microfibers.
    Paxton NC; Ren J; Ainsworth MJ; Solanki AK; Jones JR; Allenby MC; Stevens MM; Woodruff MA
    Macromol Rapid Commun; 2019 Jun; 40(11):e1900019. PubMed ID: 30932256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualization of USPIO-labeled melt-electrowritten scaffolds by non-invasive magnetic resonance imaging.
    Mueller KMA; Topping GJ; Schwaminger SP; Zou Y; Rojas-González DM; De-Juan-Pardo EM; Berensmeier S; Schilling F; Mela P
    Biomater Sci; 2021 Jul; 9(13):4607-4612. PubMed ID: 34096938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties.
    van Kampen KA; Olaret E; Stancu IC; Moroni L; Mota C
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111472. PubMed ID: 33321595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing for the design and fabrication of polymer-based gradient scaffolds.
    Bracaglia LG; Smith BT; Watson E; Arumugasaamy N; Mikos AG; Fisher JP
    Acta Biomater; 2017 Jul; 56():3-13. PubMed ID: 28342878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.
    Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG
    Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons.
    Hochleitner G; Chen F; Blum C; Dalton PD; Amsden B; Groll J
    Acta Biomater; 2018 May; 72():110-120. PubMed ID: 29555458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Decade of Melt Electrowriting.
    O'Neill KL; Dalton PD
    Small Methods; 2023 Jul; 7(7):e2201589. PubMed ID: 37254234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication.
    Zhang S; Vijayavenkataraman S; Lu WF; Fuh JYH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1329-1351. PubMed ID: 30300964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.
    He J; Xia P; Li D
    Biofabrication; 2016 Aug; 8(3):035008. PubMed ID: 27490377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.