BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32090897)

  • 1. A study on Mg wires/poly-lactic acid composite degradation under dynamic compression and bending load for implant applications.
    Li X; Wang Y; Chu C; Han L; Bai J; Xue F
    J Mech Behav Biomed Mater; 2020 May; 105():103707. PubMed ID: 32090897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite.
    Li X; Qi C; Han L; Chu C; Bai J; Guo C; Xue F; Shen B; Chu PK
    Acta Biomater; 2017 Dec; 64():269-278. PubMed ID: 28782722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress.
    Li X; Chu C; Wei Y; Qi C; Bai J; Guo C; Xue F; Lin P; Chu PK
    Acta Biomater; 2017 Jan; 48():468-478. PubMed ID: 27815168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires.
    Li X; Chu CL; Liu L; Liu XK; Bai J; Guo C; Xue F; Lin PH; Chu PK
    Biomaterials; 2015 May; 49():135-44. PubMed ID: 25725562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation behaviors of Mg alloy wires/PLA composite in the consistent and staged dynamic environments.
    Li X; Yu W; Han L; Chu C; Bai J; Xue F
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109765. PubMed ID: 31349411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnesium alloy wires as reinforcement in composite intramedullary nails.
    Morawska-Chochół A; Chłopek J; Domalik-Pyzik P; Szaraniec B; Grzyśka E
    Biomed Mater Eng; 2014; 24(2):1507-15. PubMed ID: 24642977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro degradation behavior of Mg wire/poly(lactic acid) composite rods prepared by hot pressing and hot drawing.
    Cai H; Meng J; Li X; Xue F; Chu C; Guo C; Bai J
    Acta Biomater; 2019 Oct; 98():125-141. PubMed ID: 31146034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Preparation of Poly(lactic acid)/Brushite Bilayer Coating on Biodegradable Magnesium Alloys with Multiple Functionalities for Orthopedic Application.
    Zhang L; Pei J; Wang H; Shi Y; Niu J; Yuan F; Huang H; Zhang H; Yuan G
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9437-9448. PubMed ID: 28244328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods.
    Felfel RM; Ahmed I; Parsons AJ; Walker GS; Rudd CD
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1462-72. PubMed ID: 21783156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in mechanical properties of poly-l-lactic acid mini-plate under functional load simulating sagittal splitting ramus osteotomy.
    Mizuhashi H; Suga K; Uchiyama T; Oda Y
    Int J Oral Maxillofac Surg; 2008 Feb; 37(2):162-9. PubMed ID: 18023560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration.
    Zhang HY; Jiang HB; Kim JE; Zhang S; Kim KM; Kwon JS
    J Mech Behav Biomed Mater; 2020 Dec; 112():104061. PubMed ID: 32889335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(L-lactic acid)/hydroxyapatite/collagen composite coatings on AZ31 magnesium alloy for biomedical application.
    Wang ZL; Yan YH; Wan T; Yang H
    Proc Inst Mech Eng H; 2013 Oct; 227(10):1094-103. PubMed ID: 23851659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of strain on degradation behaviors of WE43, Fe and Zn wires.
    Chen K; Lu Y; Tang H; Gao Y; Zhao F; Gu X; Fan Y
    Acta Biomater; 2020 Sep; 113():627-645. PubMed ID: 32574860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.
    Butt MS; Bai J; Wan X; Chu C; Xue F; Ding H; Zhou G
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):141-147. PubMed ID: 27770873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.
    Krüger R; Seitz JM; Ewald A; Bach FW; Groll J
    J Mech Behav Biomed Mater; 2013 Apr; 20():36-44. PubMed ID: 23455162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.
    Tian P; Xu D; Liu X
    Colloids Surf B Biointerfaces; 2016 May; 141():327-337. PubMed ID: 26874118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro dynamic degradation behavior of new magnesium alloy for orthopedic applications.
    Yang GF; Kim YC; Han HS; Lee GC; Seok HK; Lee JC
    J Biomed Mater Res B Appl Biomater; 2015 May; 103(4):807-15. PubMed ID: 25115628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on the in vitro degradation properties of poly(L-lactic acid)/beta-tricalcuim phosphate (PLLA/beta-TCP) scaffold under dynamic loading.
    Kang Y; Yao Y; Yin G; Huang Z; Liao X; Xu X; Zhao G
    Med Eng Phys; 2009 Jun; 31(5):589-94. PubMed ID: 19131266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanical strength and in vivo degradation of human hair keratin-polylactic acid composite rods].
    Yin D; Yuan L; Zhao WD; Yu L; Li JY; Dai JX; Pan GM; Zhang Y
    Di Yi Jun Yi Da Xue Xue Bao; 2003 May; 23(5):442-4. PubMed ID: 12754124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.