These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32090901)

  • 21. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning-to-rank technique based on ignoring meaningless ranking orders between compounds.
    Ohue M; Suzuki SD; Akiyama Y
    J Mol Graph Model; 2019 Nov; 92():192-200. PubMed ID: 31377536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions.
    Xiao X; Wang P; Chou KC
    Mol Biosyst; 2011 Mar; 7(3):911-9. PubMed ID: 21180772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug-target interaction prediction by learning from local information and neighbors.
    Mei JP; Kwoh CK; Yang P; Li XL; Zheng J
    Bioinformatics; 2013 Jan; 29(2):238-45. PubMed ID: 23162055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences.
    Qiu W; Lv Z; Hong Y; Jia J; Xiao X
    Front Cell Dev Biol; 2020; 8():623858. PubMed ID: 33598456
    [No Abstract]   [Full Text] [Related]  

  • 26. Designing Multi-target Compound Libraries with Gaussian Process Models.
    Bieler M; Reutlinger M; Rodrigues T; Schneider P; Kriegl JM; Schneider G
    Mol Inform; 2016 May; 35(5):192-8. PubMed ID: 27492085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GGIP: Structure and sequence-based GPCR-GPCR interaction pair predictor.
    Nemoto W; Yamanishi Y; Limviphuvadh V; Saito A; Toh H
    Proteins; 2016 Sep; 84(9):1224-33. PubMed ID: 27191053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.
    Nie G; Li Y; Wang F; Wang S; Hu X
    Biomed Mater Eng; 2015; 26 Suppl 1():S1829-36. PubMed ID: 26405954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Q-Rank: Reinforcement Learning for Recommending Algorithms to Predict Drug Sensitivity to Cancer Therapy.
    Daoud S; Mdhaffar A; Jmaiel M; Freisleben B
    IEEE J Biomed Health Inform; 2020 Nov; 24(11):3154-3161. PubMed ID: 32750950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GLIDA: GPCR-ligand database for chemical genomic drug discovery.
    Okuno Y; Yang J; Taneishi K; Yabuuchi H; Tsujimoto G
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D673-7. PubMed ID: 16381956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinformatics tools for predicting GPCR gene functions.
    Suwa M
    Adv Exp Med Biol; 2014; 796():205-24. PubMed ID: 24158807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting drug target interactions using meta-path-based semantic network analysis.
    Fu G; Ding Y; Seal A; Chen B; Sun Y; Bolton E
    BMC Bioinformatics; 2016 Apr; 17():160. PubMed ID: 27071755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative and systems pharmacology 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based approaches.
    Wu Z; Lu W; Yu W; Wang T; Li W; Liu G; Zhang H; Pang X; Huang J; Liu M; Cheng F; Tang Y
    Pharmacol Res; 2018 Mar; 129():400-413. PubMed ID: 29133212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated discovery of GPCR bioactive ligands.
    Raschka S
    Curr Opin Struct Biol; 2019 Apr; 55():17-24. PubMed ID: 30909105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classifying G-protein-coupled receptors to the finest subtype level.
    Gao QB; Ye XF; He J
    Biochem Biophys Res Commun; 2013 Sep; 439(2):303-8. PubMed ID: 23973783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homologous G Protein-Coupled Receptors Boost the Modeling and Interpretation of Bioactivities of Ligand Molecules.
    Wu J; Sun Y; Chan WKB; Zhu Y; Zhu W; Huang W; Hu H; Yan S; Pang T; Ke X; Li F
    J Chem Inf Model; 2020 Mar; 60(3):1865-1875. PubMed ID: 32040913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting coated-nanoparticle drug release systems with perturbation-theory machine learning (PTML) models.
    Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva E; González-Díaz H
    Nanoscale; 2020 Jul; 12(25):13471-13483. PubMed ID: 32613998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug Target Identification with Machine Learning: How to Choose Negative Examples.
    Najm M; Azencott CA; Playe B; Stoven V
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.