These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 32090905)

  • 1. Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications.
    Alam F; Shukla VR; Varadarajan KM; Kumar S
    J Mech Behav Biomed Mater; 2020 Mar; 103():103576. PubMed ID: 32090905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications.
    Tavakoli M; Emadi R; Salehi H; Labbaf S; Varshosaz J
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126510. PubMed ID: 37625748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications.
    Zarei M; Hasanzadeh Azar M; Sayedain SS; Shabani Dargah M; Alizadeh R; Arab M; Askarinya A; Kaviani A; Beheshtizadeh N; Azami M
    Int J Biol Macromol; 2024 Jan; 255():128040. PubMed ID: 37981284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of 3D Printed Metal-PLA Composite Scaffolds for Biomedical Applications.
    Buj-Corral I; Sanz-Fraile H; Ulldemolins A; Tejo-Otero A; Domínguez-Fernández A; Almendros I; Otero J
    Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications.
    Salehi S; Tavakoli M; Mirhaj M; Varshosaz J; Labbaf S; Karbasi S; Jafarpour F; Kazemi N; Salehi S; Mehrjoo M; Emami E
    Carbohydr Polym; 2023 Jul; 312():120787. PubMed ID: 37059527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties.
    Guo W; Yang Y; Liu C; Bu W; Guo F; Li J; Wang E; Peng Z; Mai H; You H; Long Y
    J Mech Behav Biomed Mater; 2023 Jun; 142():105848. PubMed ID: 37099921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds.
    Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds.
    Elhattab K; Bhaduri SB; Lawrence JG; Sikder P
    ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of new biocompatible 3D printed graphene oxide-based scaffolds.
    Belaid H; Nagarajan S; Teyssier C; Barou C; Barés J; Balme S; Garay H; Huon V; Cornu D; Cavaillès V; Bechelany M
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110595. PubMed ID: 32204059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties.
    Ansari MAA; Jain PK; Nanda HS
    J Biomater Sci Polym Ed; 2023 Aug; 34(10):1408-1429. PubMed ID: 36628582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.
    Senatov FS; Niaza KV; Zadorozhnyy MY; Maksimkin AV; Kaloshkin SD; Estrin YZ
    J Mech Behav Biomed Mater; 2016 Apr; 57():139-48. PubMed ID: 26710259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds.
    Chen W; Nichols L; Brinkley F; Bohna K; Tian W; Priddy MW; Priddy LB
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111686. PubMed ID: 33545848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration.
    Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture.
    Caminero MÁ; Chacón JM; García-Plaza E; Núñez PJ; Reverte JM; Becar JP
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Establishment of a 3D printing system for bone tissue engineering scaffold fabrication and the evaluation of its controllability over macro and micro structure precision].
    Li R; Chen KL; Wang Y; Liu YS; Zhou YS; Sun YC
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Feb; 51(1):115-119. PubMed ID: 30773555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer.
    Vallejos Baier R; Contreras Raggio JI; Toro Arancibia C; Bustamante M; Pérez L; Burda I; Aiyangar A; Vivanco JF
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111945. PubMed ID: 33812577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.