These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32090912)

  • 21. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.
    Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K
    Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO
    Sa MW; Nguyen BB; Moriarty RA; Kamalitdinov T; Fisher JP; Kim JY
    Biotechnol Bioeng; 2018 Apr; 115(4):989-999. PubMed ID: 29240243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.
    Wang MO; Vorwald CE; Dreher ML; Mott EJ; Cheng MH; Cinar A; Mehdizadeh H; Somo S; Dean D; Brey EM; Fisher JP
    Adv Mater; 2015 Jan; 27(1):138-44. PubMed ID: 25387454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.
    Pati F; Song TH; Rijal G; Jang J; Kim SW; Cho DW
    Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and properties of 3D scaffolds for bone tissue engineering.
    Gómez S; Vlad MD; López J; Fernández E
    Acta Biomater; 2016 Sep; 42():341-350. PubMed ID: 27370904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of scaffold design on 3D printed cell constructs.
    Souness A; Zamboni F; Walker GM; Collins MN
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):533-545. PubMed ID: 28194931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection and Tracking Volumes of Interest in 3D Printed Tissue Engineering Scaffolds using 4D Imaging Modalities.
    Kondarage AI; Gayani B; Poologasundarampillai G; Nommeots-Nomm A; Lee PD; Lalitharatne TD; Nanayakkara ND; Jones JR; Karunaratne A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1230-1233. PubMed ID: 34891509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement.
    Baptista R; Guedes M
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111528. PubMed ID: 33255081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in additive manufacturing for bone tissue engineering scaffolds.
    Moreno Madrid AP; Vrech SM; Sanchez MA; Rodriguez AP
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():631-644. PubMed ID: 30948100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling.
    Wu D; Spanou A; Diez-Escudero A; Persson C
    J Mech Behav Biomed Mater; 2020 Mar; 103():103608. PubMed ID: 32090935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering.
    Lei H; Yi T; Fan H; Pei X; Wu L; Xing F; Li M; Liu L; Zhou C; Fan Y; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111789. PubMed ID: 33545915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography.
    Prasopthum A; Shakesheff KM; Yang J
    Biofabrication; 2018 Jan; 10(2):025002. PubMed ID: 29235445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds.
    Fierz FC; Beckmann F; Huser M; Irsen SH; Leukers B; Witte F; Degistirici O; Andronache A; Thie M; Müller B
    Biomaterials; 2008 Oct; 29(28):3799-806. PubMed ID: 18606446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. scafSLICR: A MATLAB-based slicing algorithm to enable 3D-printing of tissue engineering scaffolds with heterogeneous porous microarchitecture.
    Nyberg E; O'Sullivan A; Grayson W
    PLoS One; 2019; 14(11):e0225007. PubMed ID: 31743350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.