These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32090928)

  • 61. Mechanical Performance of Cellulose Nanocrystal and Bioceramic-Based Composites for Surgical Training.
    Jeon HC; Kim YS
    Polymers (Basel); 2024 Oct; 16(19):. PubMed ID: 39408560
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rounded cutting edge model for the prediction of bone sawing forces.
    James TP; Pearlman JJ; Saigal A
    J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763623
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Experimental and numerical investigation of heat generation and surface integrity of ZrO
    Bayat M; Adibi H; Barzegar A; Rezaei SM
    J Mech Behav Biomed Mater; 2022 Jul; 131():105226. PubMed ID: 35429766
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Building of Longitudinal Ultrasonic Assisted Turning System and Its Cutting Simulation Study on Bulk Metallic Glass.
    Shan S; Feng P; Zha H; Feng F
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674332
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Design of an ultrasonic elliptical vibration device with two stationary points for ultra-precision cutting.
    Bai W; Wang K; Du D; Zhang J; Huang W; Xu J
    Ultrasonics; 2022 Mar; 120():106662. PubMed ID: 34920207
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Experimental investigations and statistical modeling of cutting force and torque in rotary ultrasonic bone drilling of human cadaver bone.
    Singh RP; Pandey PM; Mridha AR; Joshi T
    Proc Inst Mech Eng H; 2020 Feb; 234(2):148-162. PubMed ID: 31749398
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Investigation of the Effect of Process Parameters on Bone Grinding Performance Based on On-Line Measurement of Temperature and Force Sensors.
    Zhang L; Zou L; Wen D; Wang X; Kong F; Piao Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32545229
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Abrasive water jet cutting as a new procedure for cutting cancellous bone--in vitro testing in comparison with the oscillating saw.
    Schwieger K; Carrero V; Rentzsch R; Becker A; Bishop N; Hille E; Louis H; Morlock M; Honl M
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):223-8. PubMed ID: 15382033
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analysis of the process parameters affecting the bone burring process: An in-vitro porcine study.
    Kusins JR; Tutunea-Fatan OR; Athwal GS; Ferreira LM
    Int J Med Robot; 2019 Oct; 15(5):e2028. PubMed ID: 31368216
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Modelling and optimization of temperature in orthopaedic drilling: an in vitro study.
    Pandey RK; Panda SS
    Acta Bioeng Biomech; 2014; 16(1):107-16. PubMed ID: 24707883
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ductile machining of optical micro-structures on single crystal germanium by elliptical vibration assisted sculpturing.
    Wang A; Zhao Q; Wu T; Qi C; Zhang Q
    Opt Express; 2022 Jul; 30(14):24874-24888. PubMed ID: 36237031
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Study on the Mechanism of Burr Formation by Simulation and Experiment in Ultrasonic Vibration-Assisted Micromilling.
    Zhang Y; Yuan Z; Fang B; Gao L; Chen Z; Su G
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985032
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone.
    Alam K; Khan M; Silberschmidt VV
    Proc Inst Mech Eng H; 2013 Jun; 227(6):636-42. PubMed ID: 23636763
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An Analytical and Experimental Study on Cutting Characteristics and Transient Cutting Force Modeling in Feed Directional Ultrasonic Vibration-Assisted Cutting of High Strength Alloys.
    Chen X; Tang J; Shao W; Hu B; Ye J
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295453
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 3D Printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery.
    Tai BL; Kao YT; Payne N; Zheng Y; Chen L; Shih AJ
    Med Eng Phys; 2018 Nov; 61():61-68. PubMed ID: 30181022
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics.
    Wang R; Li W
    Materials (Basel); 2015 Aug; 8(8):5018-5027. PubMed ID: 28793488
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Experimental analysis of the process parameters affecting bone burring operations.
    Kusins JR; Tutunea-Fatan OR; Ferreira LM
    Proc Inst Mech Eng H; 2018 Jan; 232(1):33-44. PubMed ID: 29148312
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In-vitro experimental study of histopathology of bone in vibrational drilling.
    Alam K; Al-Ghaithi A; Piya S; Saleem A
    Med Eng Phys; 2019 May; 67():78-87. PubMed ID: 30981608
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Specifications for machining the bovine cortical bone in relation to its microstructure.
    Sugita N; Mitsuishi M
    J Biomech; 2009 Dec; 42(16):2826-9. PubMed ID: 19775694
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Machining characteristics of the haversian and plexiform components of bovine cortical bone.
    Conward M; Samuel J
    J Mech Behav Biomed Mater; 2016 Jul; 60():525-534. PubMed ID: 27041629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.